Request to Amend Order of Conditions

Under Wetlands Program Policy 85-4: Amended Orders

Proposed Self-Storage Facility

Project Location: State Road Whately, MA 01085 Assessor's Map 5 Parcel 29

Owner & Applicant: Todd Cellura Pioneer Valley Self-Storage 710 Southampton Road Westfield, MA 01085

January 6, 2023

Pioneer Land Planning LLC

Planning for a better tomorrow

334 Linden Street · Holyoke, MA 01040

(413)588-0985 · info@pioneerlandplanning.com

TABLE OF CONTENTS

SECTION

- 1. COVER LETTER
- 2. FIGURES
 - USGS MAP WITH NHESP OVERLAY (SOURCE: MASSMAPPER)
 - FEMA FLOOD INSURANCE RATE MAP (FIRM)
 - USDA SOIL MAP

3. APPENDIX

STRUCTURAL ANALYSIS REPORT - OPEN BOTTOM BOX CULVET

BY CONTECH ENGINEEERED SOLUTIONS LLC DATED SEPTEMBER 21, 2022

• **"NOTICE OF INTENT FILING PLAN" SET (3 SHEETS)** BY PIONEER LAND PLANNING, LLC DATED JANUARY 6, 2023

1. COVER LETTER

Pioneer Land Planning LLC

334 Linden Street · Holyoke, MA 01040(413)588-0985 · info@pioneerlandplanning.com

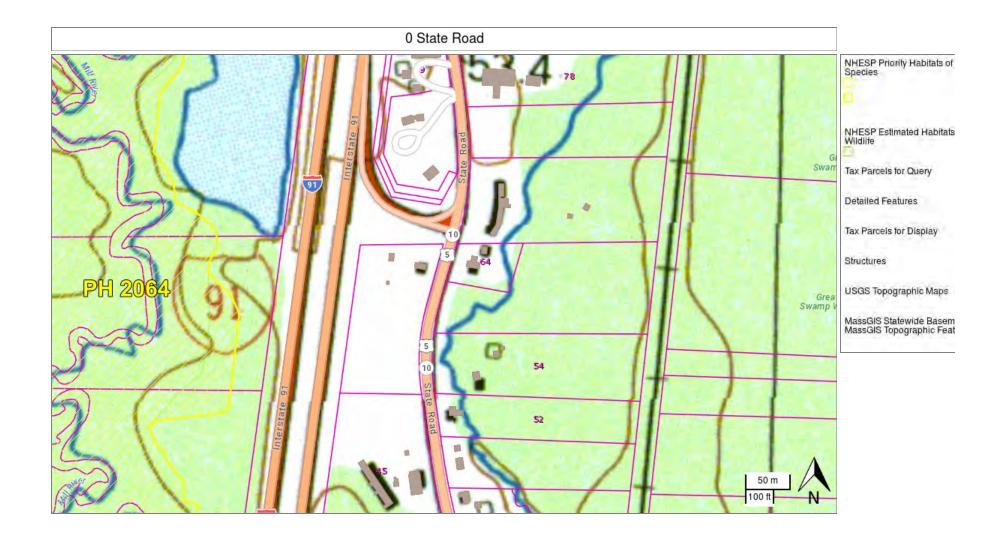
January 6, 2023

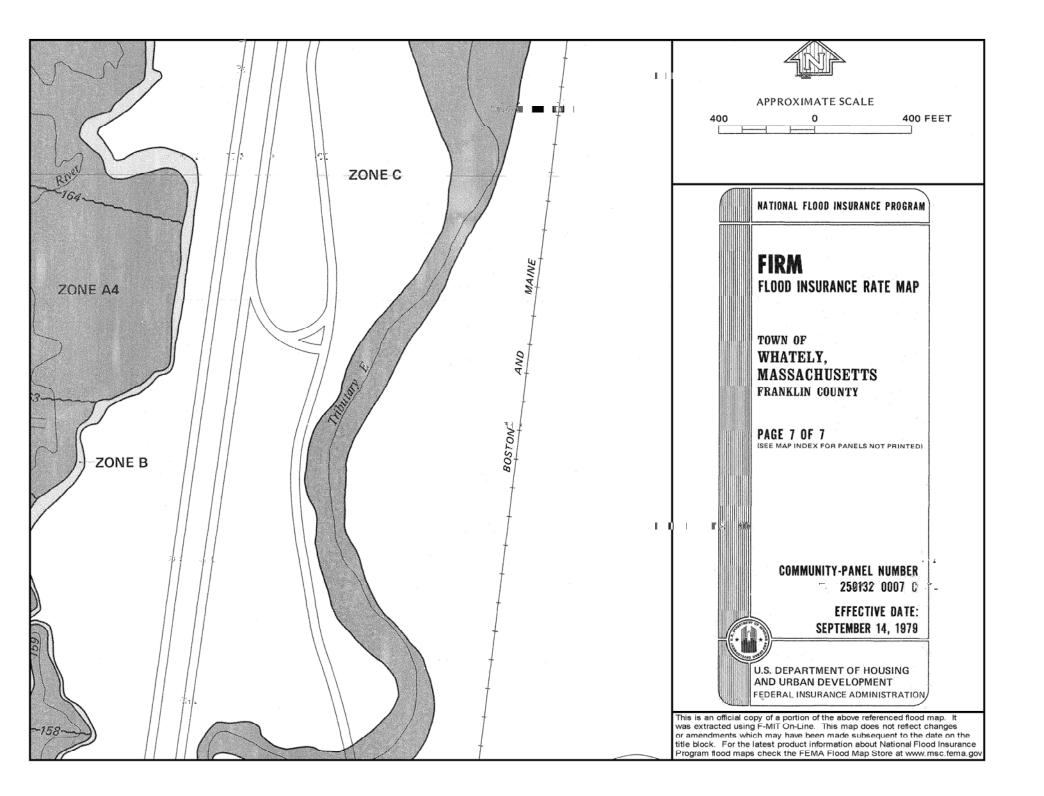
Scott Jackson, Chair Town of Whately Conservation Commission 4 Sandy Lane South Deerfield, MA 01373

RE: Notice of Intent Proposed Self-Storage Facility State Road Whately, MA 01373 Assessor's Map 5, Parcel 29

Chairman Jackson & Commissioners:

On behalf of the applicant, Todd Cellura of Pioneer Valley Self-Storage, Pioneer Land Planning requests to amend the existing Order of Conditions recorded in the Franklin Country registry of deeds in book 7846 on page 103. The applicant requests to amend the Order to Conditions in order to reduce the area of alteration, include detailed structural requirements for the previously approved crossing and add a dewatering plan. In conjunction with this application, the applicant is submitting a new Notice of Intent in order to alter the route of the previously approved water lines. These filing will work in unison to mitigate the overall impact of the proposed project.

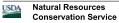

We are hereby requesting to be placed on the Commission's next available agenda. Should you have any questions or comments regarding this Notice of Intent, please do not hesitate to contact this office at your earliest convenience.


Sincerely,

Christopher Karney, PLS, EIT

2. FIGURES

- USGS MAP WITH NHESP OVERLAY (SOURCE: MASSMAPPER)
- FEMA FLOOD INSURANCE RATE MAP (FIRM)
- USDA SOIL MAP


USDA Natural Resources

Conservation Service

Web Soil Survey National Cooperative Soil Survey 1/29/2021 Page 1 of 3

Map Unit Legend

Map Unit Symbol Map Unit Name		Acres in AOI	Percent of AOI		
31A	Walpole sandy loam, 0 to 3 percent slopes	0.4	7.1%		
256A	Deerfield loamy fine sand, 0 to 3 percent slopes	5.1	92.9%		
Totals for Area of Interest		5.5	100.0%		

3. APPENDIX

- STRUCTURAL ANALYSIS REPORT OPEN BOTTOM BOX CULVET
 BY CONTECH ENGINEEERED SOLUTIONS LLC
 DATED SEPTEMBER 21, 2022
- **"NOTICE OF INTENT FILING PLAN" SET (3 SHEETS)** BY PIONEER LAND PLANNING, LLC DATED JANUARY 6, 2023

September 21, 2022

Contech Engineered Solutions LLC 9100 Centre Pointe Drive, Suite 400 West Chester, OH 45069

- Attn: Mr. Wesley Brewer Design Engineer
- Re: Review of AASHTO LRFD Structural Calculations and Shop Drawings, Review of Footing Calculations, and Preparation of Aluminum Headwall/Wingwall Calculations for an ALBC #7 (720529); Self Storage Facility, Whately, Massachusetts; KBJW Report No. 25231D-1-0822-05 (Revision No.1)

Ladies and Gentlemen:

Koontz Bryant Johnson Williams, Inc. (KBJW, formerly CBC Engineers and Associates, Ltd.) is pleased to submit our report for the above referenced project. The purpose of this report is to provide a review of AASHTO LRFD structural calculations and shop drawings, review of footing calculations, and preparation of aluminum headwall/wingwall calculations for the proposed ALBC structure. Others are responsible for all other aspects of the structure, including but not limited to hydraulics, backfill, scour/abrasion/corrosion, and the only responsibility of KBJW is the above referenced work. The calculations, specifications, and drawings are included in this report. If you have any questions, please contact us.

Respectfully submitted,

Koontz Bryant Johnson Williams, Inc.

DN/MTH/mt ec: Client (wesley.brewer@conteches.com) ec: Darrell Sanders (darrell.sanders@conteches.com) ec: Melinda Fugate (melinda.fugate@conteches.com) 1-File

TABLE OF CONTENTS

SECTION

PAGE NO.

Ι ΤΕΧΤ

1.0	AUTHORIZATION1
2.0	PROJECT DESCRIPTION1
3.0	REVIEW OF AASHTO CALCULATIONS AND SHOP DRAWINGS1
4.0	REVIEW OF SPREAD FOOTING CALCULATIONS
5.0	EVALUATION OF ALUMINUM HEADWALLS
5.0	SCOUR
6.0	WARRANTY

II SPECIFICATIONS

APPENDIX A – CALCULATIONS APPENDIX B – CONTECH SHOP DRAWINGS

SECTION I

TEXT

1.0 AUTHORIZATION

Authorization to proceed with this evaluation was given by Mr. Wesley Brewer of Contech Engineered Solutions LLC. Work was to proceed in accordance with KBJW Quotation No. 22-375-05, dated August 11, 2022, and the terms and conditions of the Master Agreement for Engineering Services contract between Contech Construction Products, Inc. and CBC Engineers & Associates, Ltd. dated July 30, 2009.

2.0 PROJECT DESCRIPTION

This project consists of an ALBC with a span of 11'-4" and a rise of 7'-2" proposed to be installed in Whately, Massachusetts. The height of cover over the structure is reported to be 2.6 to 5.0 feet at 120 pcf with HL-93 live load.

Structure Type	ALBC #7
Span (ftin.)	11'-4"
Rise (ftin.)	7'-2"
Height of Cover (ft.)	2.6' to 5.0' @ 120 pcf
Plate Thickness (in.)	0.125" crown/0.125" haunches
Reinforcing Ribs and Spacing	Type IV @ 18" crown/Type II @ 54" haunches
Length (ftin.)	31'-9"
Live Load	HL-93
Type of end treatment	Aluminum HW
Foundation	Concrete Footings (by Contech)

TABLE 1 STRUCTURE CHARACTERISTICS

We have been provided with Contech project drawings for the ALBC; their Project No. 720529. The total length of the ALBC structure is 31.75 feet.

3.0 REVIEW OF AASHTO CALCULATIONS AND SHOP DRAWINGS

We have evaluated AASHTO structural calculations and shop drawings for the ALBC and agree that they conform to accepted industry standards for this structure type. We have not made an independent verification of the data used to perform the design calculations, and understand all initial assumptions and data are correct as presented to us. AASHTO structural calculations for the ALBC have been performed for a design minimum and maximum height of cover of 2.6

feet and 5.0 feet respectively over the structure at a unit weight of 120 pcf with HL-93 live load. The select backfill around and over the ALBC structure must be in strict conformance with the project specifications, the manufacturer's requirements and accepted industry standards. Care must be exercised to maintain balanced loading on the structure during any backfilling or construction operations, and the structure must be properly backfilled to maintain this balanced loading. The backfill differential level between sides of the ALBC should not exceed 16 inches. The contractor is responsible for any required bracing/shoring to prevent any distortion of the structure during installation and for knowing and following all applicable safety requirements. The dimensions of the structure should be within 2% of the design dimensions at all locations during and at the completion of installation, and this should be verified by field measuring during construction. The allowable bearing capacity of the non-yielding foundation and embankment material below and beside the ALBC must meet the project requirements, and this must be verified in the field prior to construction. The reviewed AASHTO structural calculations and shop drawings are included in Appendix A and Appendix B of this report, respectively.

4.0 REVIEW OF SPREAD FOOTING CALCULATIONS

We have been provided with spread footing calculations for the ALBC. The spread footing calculations have been performed for the ALBC for the maximum design height of cover of 5.0 feet at 120 pcf considering the design HL-93 live load. The load on a footing consists of the load on top of the structure carried by each leg of the structure, which is equal to the unit weight of the soil times the height of cover over the structure divided into each leg; plus the weight of the soil on the outside edges of the footing outside the structure, plus the weight of the structure and footings, plus live load. The weight of the soil over the footings that is excavated can be deducted from the pressure at the bottom of the footing in the consideration of the net bearing capacity. The footing also must be designed for any horizontal thrust which is created by the angle of entry into the footing. Since the ALBC structure has a span of 11'-4" and a rise of 7'-2", the structure enters the footing at an angle and there is, therefore, a horizontal component to the footing reaction towards the outside of the structure. The maximum loading of the structure footings based on AASHTO LRFD Design Methodology as included in the provided spread footing calculations is $R_v = 5,140$ plf and $R_h = 1,416$ plf.

The calculations for the spread footings have been performed considering the abovementioned loads for a net allowable bearing capacity of the foundation soil of 4,000 psf and a friction factor between the footing concrete and foundation soil of 0.45. Based on a net allowable bearing capacity of 4,000 psf and a friction factor of 0.45, the width of the structure footings is to be 2'-6" with a minimum thickness of 20 inches below the keyway. The steel required in the footing is #5 bars at 15" on center at the bottom, #5 bars at 15" on center at the top, and #5 longitudinal reinforcement bars evenly spaced around the perimeter. The footing details as per Contech footing shop drawings; their Project No. 720529 conform to the performed calculations.

The net allowable bearing capacity of the foundation soil must be at least 4,000 psf. This must be verified in the field by a geotechnical engineer before the installation of the ALBC. Note that CBC has not made an independent evaluation of the net allowable bearing capacity and friction factor for this project. We recommend that a geotechnical engineer investigate the site and that borings be performed if this has not already been done. All recommendations in the geotechnical engineer's report should be strictly adhered to during the installation of the proposed ALBC. The design and evaluation of any foundation improvement required to achieve a net allowable bearing capacity of 4,000 psf, a friction factor of 0.45, or to protect against frost and scour and settlement, is the responsibility of others than CBC Engineers & Associates, Ltd. The reviewed footing calculations are attached in Appendix A of this report. The shop drawings are attached in Appendix B of this report.

5.0 EVALUATION OF ALUMINUM HEADWALLS

Contech's standard aluminum structural plate headwall panels have been analyzed for the ends of the structure based on the layout, geometry and wall details provided in the Contech project drawings; Project No. 720529. The headwalls have been analyzed for the loads that will be placed on them by the backfill around the structure and by the surcharge from the design live load with no unbalanced hydrostatic loading. The backfill soil behind the headwalls within 10.0 feet must be granular material meeting the requirements of the select backfill for the ALBC structure having a minimum internal friction angle of 34° (value to be field verified). The following describes the design of the endwalls:

CHARACTERISTIC	VALUES	
Maximum Design Fill Height (ft.)	10,92'	-
Panel Thickness (in.)	0.150"/0.125"	
Spacing of Top Anchors (ft.)	4.5'	
Total number of Anchor Rods to shell	3	
Headwall width (ft)	13'-6"	

TABLE 2 ALUMINUM HEADWALLS

Each headwall panel will be anchored at locations shown on the drawings with tie rods to the structure.

The permanent finished groundline at the aluminum walls must be maintained at an elevation of a minimum of 2.25' above the bottom of the walls at all times. The soil in front of the wall providing resistance to the toe of the wall must have a minimum internal friction angle of at least 34° (value to be field verified). The top cap beams will be typical Contech beams made of alloy 6063-T6 material. The calculations for the walls are contained in Appendix A and the shop drawings are attached in Appendix B.

6.0 SCOUR

It is beyond the scope of this report to evaluate scour and it is the responsibility of others than KBJW. The depth of the walls and footings should be evaluated for scour before the walls and footings are constructed, and scour countermeasures (by others) provided as necessary.

7.0 WARRANTY

Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. No other warranty, expressed or implied, is made.

This report has been prepared for the exclusive use of Contech Engineered Solutions LLC, for specific application to the structure herein described. Specific recommendations have been provided in the various sections of the report. The report shall, therefore, be used in its entirety. This report is not a bidding document and shall not be used for that purpose. Anyone

reviewing this report must interpret and draw their own conclusions regarding specific construction techniques and methods chosen. KBJW is not responsible for the independent conclusions, opinions or recommendations made by others.

SECTION II

SPECIFICATIONS

I - GENERAL

1.0 STANDARDS AND DEFINITIONS

- 1.1 STANDARDS All standards refer to latest edition unless otherwise noted.
 - 1.1.1 ASTM D-698-70 (Method C) "Standard Test Methods for Moisture. Density Relations of Soils and Soil Aggregate Mixtures Using 5.5-lb (2.5 kg.) Rammer and 12" (305-mm) Drop".
 - **1.1.2** ASTM D-1557 "Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ [2,700 kN · m/m³]).
 - **1.1.3** ASTM D-2922 "Standard Test Method for Density of Soil and Soil Aggregate in Place by Nuclear Methods (Shallow Depth)".
 - **1.1.4** ASTM D-1556 "Standard Test Method for Density of Soil in Place by the Sand-Cone Method".
 - **1.1.5** All construction and materials shall be in accordance with the current AASHTO LRFD Specifications.

1.2 DEFINITIONS

- **1.2.1** Owner In these specifications the word "Owner" shall mean the project owner.
- **1.2.2** Engineer In these specifications the word "Engineer" shall mean the Owner designated engineer.
- **1.2.3** Design Engineer In these specifications the words "Design Engineer" shall mean CBC Engineers and Associates, Ltd.
- **1.2.4** Contractor In these specifications the word "Contractor" shall mean the firm or corporation undertaking the execution of any work under the terms of these specifications.
- **1.2.5** Approved In these specifications the word "approved" shall refer to the approval of the Engineer or his designated representative.
- **1.2.6** As Directed In these specifications the words "as directed" shall refer to the directions to the Contractor from the Owner or his designated representative.

2.0 GENERAL CONDITIONS

2.1 The Contractor shall furnish all labor, material and equipment and perform all work and services except those set out and furnished by the Owner, necessary to complete in a satisfactory manner the site preparation, excavation, culvert installation, headwalls, filling, compaction, and grading as shown on the plans and as described therein.

This work is to be accomplished under the observation of the Owner or his designated representative.

2.2 The Contractor shall examine, investigate and inspect the construction site as to the nature and location of the work, and the general and local conditions at the construction site, including, without limitation, the character of surface or subsurface conditions and obstacles to be encountered on and around the construction site; and shall make such additional investigation as he may deem necessary for the planning and proper execution of the work.

If conditions other than those indicated are discovered by the Contractor, the Owner should be notified immediately. The material which the Contractor believes to be a changed condition should not be disturbed so that the owner can investigate the condition.

2.3 The construction shall be performed under the direction of an experienced engineer who is familiar with ALBC culverts.

II - ALUMINUM HEADWALLS

1.0 GENERAL

1.1 The headwalls for the culvert shall be corrugated aluminum structural plates, assembled as shown on the construction drawings and the manufacturer details.

2.0 MATERIAL

- **2.1** Panels shall be fabricated from aluminum structural plate as specified in ASTM B746 with a minimum panel thickness of 0.150/0.125 inches for the headwalls.
- 2.2 The material for the rib, and beams shall be Alloy 6061-T6.
- **2.3** The material for the galvanized anchor rods shall be ³/₄" nominal steel bars (0.677" actual, ³/₄-10 UNC threads) ASTM F 1554 hot-dip galvanized per ASTM A -123 with a minimum yield of 55,000 psi.
- 2.4 The top cap beam of the walls shall be Alloy 6063-T6.
- **2.5** The bolts, nuts and anchor rods shall be hot-dipped galvanized, specially heat-treated ³/₄ inches in diameter steel, meeting ASTM A-307 specifications.

3.0 INSTALLATION

- **3.1** The top of the headwalls shall be horizontal. The headwall cap shall be field-drilled and bolted to the headwall vertical panels.
- **3.2** The bottom of the headwall panels shall be attached to the corrugated plates through the reinforcing rib bolted to the ALBC structure and bolted to the headwall.
- **3.3** Each headwall shall be anchored with anchor rods as shown on the construction drawings. There must be 3 central rods anchored back from the headwall at the tie back reinforcing rib at each headwall.
- 3.4 All headwall panels shall have the top and bottom elevations as shown on the drawings. All panels shall be permanently entrenched a minimum of 2.25' below the final grade elevation as shown on the drawings. The soil in front of the wall providing resistance to the toe of the wall must have a minimum internal friction angle of at least 34° (value to be field verified).
- **3.5** The backfill against the headwalls, and within 10-feet of the back of the walls, shall meet the gradation of the select backfill for the ALBC and shall have a minimum internal friction angle of 34 degrees (to be field verified). The backfill behind the walls shall be placed and compacted as per the manufacturer's recommendations and accepted industry standards.

- **3.7** If changes in elevations of fill occur, the designer of the structures and walls shall be notified to check the safety factors.
- **3.8** Hydrostatic pressure shall be alleviated through one or both of the methods listed below or as approved by the Engineer of Record.

1) Field drill 2" diameter weep holes at the center of every 54" panel. Holes shall be approximately 3-6 inches above the finished grade line near the base of the wall to minimize hydrostatic pressure. A minimum of a 4 ounce filter fabric shall be placed behind the weep holes to maintain a soil-tight system.

2) Underdrains shall be installed per the Engineer of Record's recommendations.

III – FOOTINGS

1.0 EXCAVATION FOR FOOTINGS

- **1.1** Footing excavation shall consist of the removal of all material, of whatever nature, necessary for the construction of foundations.
- **1.2** It shall be the responsibility of the Contractor to identify and relocate all existing utilities which conflict with the proposed footing locations shown on the plan. The Contractor must call the appropriate utility company at least 48 hours before any excavation to request exact field location of utilities, and coordinate removal and installation of all utilities with the respective utility company.
- **1.3** The side of all excavations shall be cut to prevent sliding or caving of the material above the footings.
- **1.4** Excavated material shall be disposed in accordance with the plan established by the Engineer.
- **1.5** The footings are designed for a net allowable bearing capacity of 4,000 psf. This value shall be field verified. The evaluation and design of any foundation improvement required to achieve a net allowable bearing capacity of 4,000 psf and a friction factor of 0.45, and to protect against frost and scour and settlement, is the responsibility of others than CBC Engineers.

IV - CONCRETE

1.0 CODES AND STANDARDS

1.1 Reinforced concrete shall conform to the requirements of AASHTO Standard Specifications for Highway Bridges, Division II - Construction, Section 8, "Concrete Structures", for Class A concrete, having a minimum compressive strength of 4,000 psi.

2.0 STANDARDS FOR MATERIALS

- 2.1 Portland Cement Conforming to ASTM Specification C-150, Type I or II.
- **2.2** Water The water shall be drinkable, clean free from injurious amounts of oils, acids, alkalis, organic materials, or deleterious substances.
- 2.3 Aggregates Fine and coarse aggregates shall conform to current ASTM Specification C-33 "Specification for Concrete Aggregates" except that local aggregates which have been shown by tests and by actual service to produce satisfactory qualities may be used when approved by the Engineer.
- **2.4** Submittals Test data and/or certifications to the Owner shall be furnished upon request.

3.0 PROPORTIONING OF CONCRETE

3.1 COMPOSITION

- **3.1.1** The concrete shall be composed of cement, fine aggregate, coarse aggregate and water.
- **3.1.2** The concrete shall be homogeneous, readily placeable and uniformly workable and shall be proportioned in accordance with ACI-211.1.
- **3.1.3** Proportions shall be established on the basis of field experience with the materials to be employed. The amount of water used shall not exceed the maximum 0.45 water/cement ratio, and shall be reduced as necessary to produce concrete of the specified consistency at the time of placement.
- **3.1.4** An air-entraining admixture, conforming to the requirements of ASTM C260, shall be used in all concrete furnished under this contract. The quantity of admixture shall be such as to produce an air content in the freshly mixed concrete of 6 percent plus or minus 1 percent as determined in accordance with ASTM C231 or C173.
- **3.2** Qualities Required As indicated in the table below:

TABLE IV-1

QUALITIES REQUIRED

ITEM	QUALITY REQUIRED
AASHTO Class	А
Type of Cement	I or II
Compressive Strength fc @ 28 days	4,000 psi
Slump, inches	2 - 4 in.

- **3.3** Maximum Size of Coarse Aggregates Maximum size of coarse aggregates shall not be larger than 19 mm (3/4 inches).
- **3.4** Rate of Hardening of Concrete Concrete mix shall be adjusted to produce the required rate of hardening for varied climatic conditions:

Under 40°F Ambient Temperature – All work to be in accordance with the recommendations of ACI-306R "Cold Weather Concreting."

4.0 MIXING AND PLACING

- **4.1** Equipment Ready Mix Concrete shall be used and shall conform to the "Specifications for Ready-Mix Concrete," ASTM C-94. Approval is required prior to using job mixed concrete.
- **4.2** Preparation All work shall be in accordance with ACI-304, "Recommended Practice for Measuring, Mixing, Transporting and Placing Concrete." All construction debris and extraneous matter shall be removed from within the forms. Concrete shall be placed on clean surfaces, free from water. Concrete that has to be dropped four (4) feet or more shall be placed through a tremie.
- **4.3** All concrete shall be consolidated by internal mechanical vibration immediately after placement. Vibrators shall be of a size appropriate for the work, capable of transmitting vibration to concrete at frequencies of not less than 4,500 impulses per minute.

5.0 FORM WORK

- 5.1 Forms shall be of wood, steel or other approved material and shall be set and held true to the dimensions, lines and grades of the structure prior to and during the placement of concrete.
- **5.2** Forms shall not be removed until the concrete has sufficient strength to prevent concrete drainage and/or damage.

6.0 CURING

6.1 Fresh concrete shall be protected from rains, flowing water and mechanical injury for a period of at least seven (7) days. No load shall be applied to the concrete until it has reached its design strength.

7.0 REINFORCING STEEL

7.1 MATERIAL

7.1.1 All reinforcing bars shall be deformed bars (ASTM-A615) Grade 60.

7.2 BENDING AND SPLICING

- 7.2.1 Bar reinforcement shall be cut and bent to the shapes shown on the plans. Fabrication tolerances shall be in accordance with ACI 315. All bars shall be bent cold, unless otherwise permitted.
- **7.2.2** All reinforcement shall be furnished in the full lengths indicated on the plans unless otherwise permitted. Except for splices shown on the plans and splices for No. 5 or smaller bars, splicing of bars will not be permitted without written approval. Splices shall be staggered as far as possible.
- **7.2.3** In lapped splices, the bars shall be placed and wired in such a manner as to maintain the minimum distance to the surface of the concrete shown on the plans.
- **7.2.4** Substitution of different size bars will be permitted only when authorized by the engineer. The substituted bars shall have an area equivalent to the design area, or larger.

7.3 PLACING AND FASTENING

- **7.3.1** Steel reinforcement shall be accurately placed as shown on the plans and firmly held in position during the placing and setting of concrete. Bars shall be tied at all intersections around the perimeter of each mat and at not less than 2 foot centers or at every intersection, whichever is greater, elsewhere. Welding of cross bars (tack welding) will not be permitted for assembly of reinforcement.
- **7.3.2** Reinforcing steel shall be supported in its proper position by use of mortar blocks, wire bar supports, supplementary bars or other approved devices. Such devices shall be of such height and placed at sufficiently frequent intervals so as to maintain the distance between the reinforcing and the formed surface or the top surface within 1/4 inch of that indicated on the plans.

V – FILTER FABRIC (GEOTEXTILE SCREEN)

- **1.0** Filter fabric shall be placed at all locations shown on the construction drawings and as necessary to maintain a soil tight system.
- **2.0** Filter fabric cloth shall conform to Contech specification for C60-NW or equivalent and shall meet the following ASTM tests:
 - 2.1 ASTM D4751 Apparent opening size equal to #70 U.S. Standard Sieve Size.
 - **2.2** ASTM D4632 (Grab Tensile Test) Minimum Strength = 160 pounds.
 - 2.3 ASTM D4632 (Grab Elongation) 30-70%.
 - 2.4 ASTM D4533 (Trapezoidal Tear) Minimum Strength = 60 pounds.
 - **2.5** ASTM D4355 (Stabilized for Heat and Ultra-Violet Degradation) 70% strength retained.
- 3.0 The minimum fabric coefficient of permeability (ASTM D4491) shall be 0.24 cm/sec.
- 4.0 The fabric shall be non-woven with a minimum thickness (ASTM D5199) of 60 mils.
- 5.0 Fabric shall not be placed over sharp or angular rocks that could tear or puncture it.
- 6.0 Care should be exercised to prevent any puncturing or rupture of the filter fabric. Should such rupture occur the damaged area should be covered with a patch of filter fabric using an overlap minimum of one (1) foot.

APPENDIX A

CALCULATIONS

Structural Design Check for Corrugated Aluminum Plate Box Culvert

Per AASHTO LRFD Bridge Design Specifications, Section 12, 9th Edition 2020

Project Name:	Self Stor	rage Facility		CRM #:	720,529
Location:	Wha	tely, MA		Date:	8/11/2022
I, Height of Cover		2.6	(ft.)	Enter Structure He	ere:
s structure adequate to carr	y the load?	(1) ²		7	R1
S, Span			_	11.33	(ft.)
R, Rise				7.167	(ft.)
Crown Gage				2	
rown Rib Spacing				18	(in.)
rown Rib Type				Type IV	
launch Gage				2]
launch Rib Spacing				54	(in.)
launch Rib Type				Type II	
Number of Wheels per Axle		4		Use Above Plate/	Rib Values?
ive Loading Type		HL-93		Yes	
		Tandem Contro	ls	4 	
L, Sum of Axle Loads		50	kip		(12.9.4.2)
5, Adjustment Factor		0.727			(12.9.4.2)
2, Adjustment Factor		1.00		Typical Wheel/Load Combinations:	(12.9.4.2)
C _{II} , Adjusted Live Load	$C_{\parallel} = C_1 C_2 A_L$	36.33		HS20: 4 wheels Tandem: 4 wheels	(12.9.4.2)
H, Crown Soil Cover Factor	$C_{\rm H} = 1.15 \cdot \left(\frac{H - 1.4}{14}\right) > 1$	1.064	_		(12.9.4.4-1)
R _H , Haunch Moment Reduct		0.82			(Table 12.9.4.3-3)
, Density of Cover Material		0.12	(kcf)		(12.9.4.2-1)
EV, Redundancy Factor		1.05			(1.3.4, 12.5.4)
LL, Redundancy Factor		1			(1.3.4, 12.5.4)
EV, Dead Load Factor		1.5			(Table 3.4.1-2)
_{LL} , Live Load Factor		2.00			(12.9.4.2)
K ₁ , Live Load	lf:	0.107			
1oment Calculator	8' < S < 20'	Then:	$K_1 = \frac{0.08}{\left(\frac{H}{S}\right)^{0.2}}$		(12.9.4.2-4)
	20' < S < 25'-6"	S < 20' Then:	$K_1 = \frac{0.08 - 0.0}{\left(\frac{I}{2}\right)}$	$\frac{1002(S-20)}{M}$	(12.9.4.2-5)
2, Live Load	lf:		- (3	3)	(12.9.4.2)
1oment Calculator	1.4' < H < 3.0'	Then:	$K_2 = 0.54 H^2$	- 0.4H + 5.05	(12.9.4.2-6)
	3.0' < H < 5.0'	Then:	K ₂ = 1.90H +	3	(12.9.4.2-7)

Page 1 of 2 These results are submitted to you as a guideline only, without liability on the part of Contech Engineered Solutions LLC for accuracy or suitability to any particular application, and are subject to your verification.

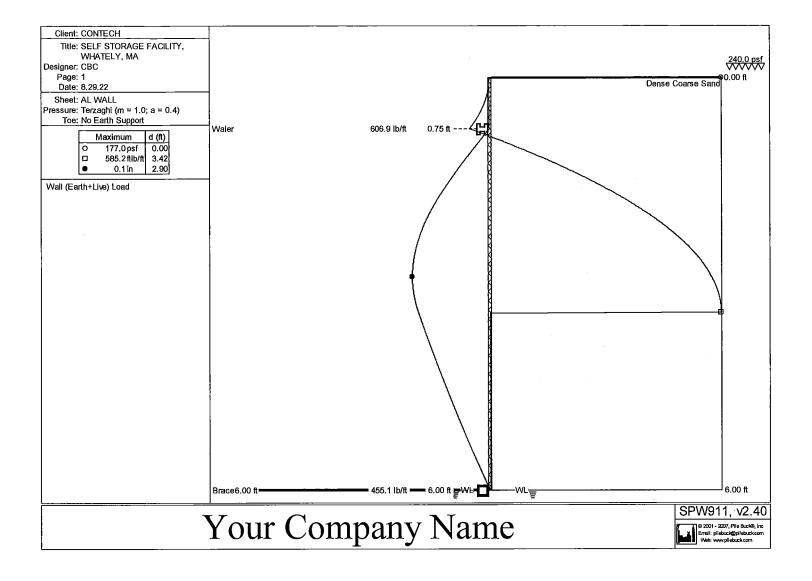
Structural Design Check for Corrugated Aluminum Plate Box Culvert

Per AASHTO LRFD Bridge Design Specifications, Section 12, 9th Edition 2020

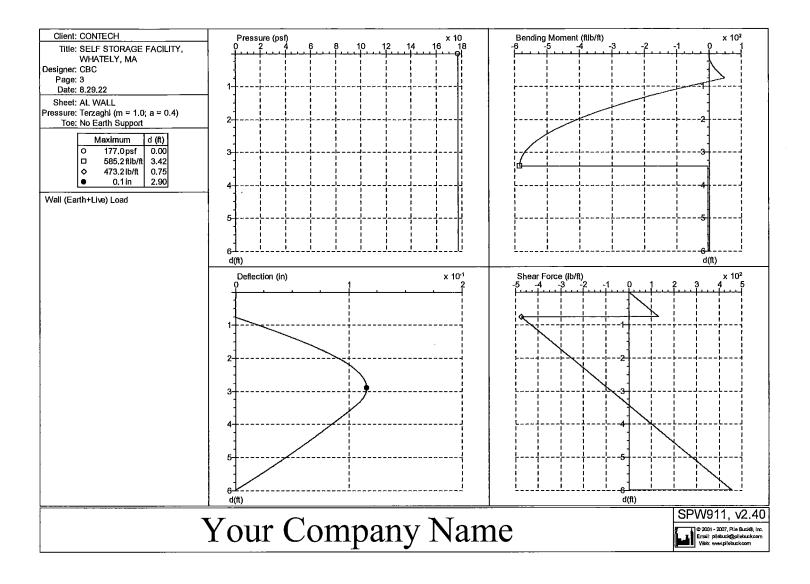
				ENG	
M _{dl} , Dead Load		1.934	(kip-ft./ft)		(12.9.4.2-1)
Moments	$M_{d1} = f \{S^{3}[0.00]$	(53 - 0.00024(S - 12)] + 0.053	$(H-1.4)S^{2}$		
M _{II} , Live Load Moments	$M_{II} = C_{II}K_1 \times S/K_2$	5.773	(kip-ft./ft)		(12.9.4.2-3)
M _{dlu} , Factored DL Moments	$M_{dlu} = \eta_{EV} \gamma_{EV} M_d$	3.046	(kip-ft./ft)		(12.9.4.2)
M _{∥u} , Factored LL Moments	$M_{IIu} = \eta_{LL} \gamma_{LL} M_{II}$	11.545	. (kip-ft./ft)		(12.9.4.2)
M _{pc} , Crown Plastic Moment Resistance	$M_{pc} = C_{H}P_{c}(M_{dlu}$	+M _{llu})	See Calcs Be	low	(12.9.4.3-1)
M _{ph} , Haunch Plastic Moment Resistance	$M_{ph} = C_{H}(1.0-P_{c})$)(M _{dlu} +R _H M _{llu})	See Calcs Be	low	(12.9.4.3-2)
M _{pca} , Allowable Crown Plastic Moment	Provided by Rib Type, Rib Spacing, and	10.42	_ (kip-ft./ft)		
M _{pha} , Allowable Haunch Plastic Moment	Provided by Rib Type, Rib Spacing, and	4.62	_ (kip-ft./ft)		
S, Span (ft.)	11.33				
Table	e 12.9.4.3-1	* calculate P _c using ma	aximum allowa	ible M _{pca} or max P _c	
Span (ft.)	Allowable Range of P _c	P _c = M _{pca} / C _H (M _{dlu} +M _{llu}	u)		(Eq. 3.1)
< 10.0 10.0 - 15.0	0.55 - 0.70 0.50 - 0.70	P _c =	0.6710		
15.0 - 20.0	0.45 - 0.70		0.01.10		
20.0 - 25.4	0.45 - 0.60	* Calculate M _{ph} using t	he P _c from pre	evious step.	
		$M_{ph} = C_H (1.0 - P_c) [M_{dlu}$	₊ M _{llu} (R _h)]		(Eq. 3.2)
		M _{ph} =	4,374	$\{n\}$	
V, Unfactored		3.969	(kip/ft.)		(12.9.4.5-1)
Footing Reaction	$V = p \left(\frac{HS}{2.0} + \frac{1}{4} \right)$	$\left(\frac{S^2}{0.0}\right) + \frac{A_L}{8 + 2(H+R)}$	•		
Unfactored DL		2.153	· · · ·		
Unfactored LL R _v , Vertical	R _v = (V)cos∆	1.816 3.827	(kip/ft.) (kip/ft.)	dourouard	
Reaction	$n_V = (v) \cos \Delta$	<u> </u>	- (NIP/IL.)	downward	
R _H , Horizontal Reaction	R _H = (V)sin∆	1.054	(kip/ft.)	outward	

Page 2 of 2 These results are submitted to you as a guideline only, without liability on the part of Contech Engineered Solutions LLC for accuracy or suitability to any particular application, and are subject to your verification. **Structural Design Check for Corrugated Aluminum Plate Box Culvert** Per AASHTO LRFD Bridge Design Specifications, Section 12, 9th Edition 2020

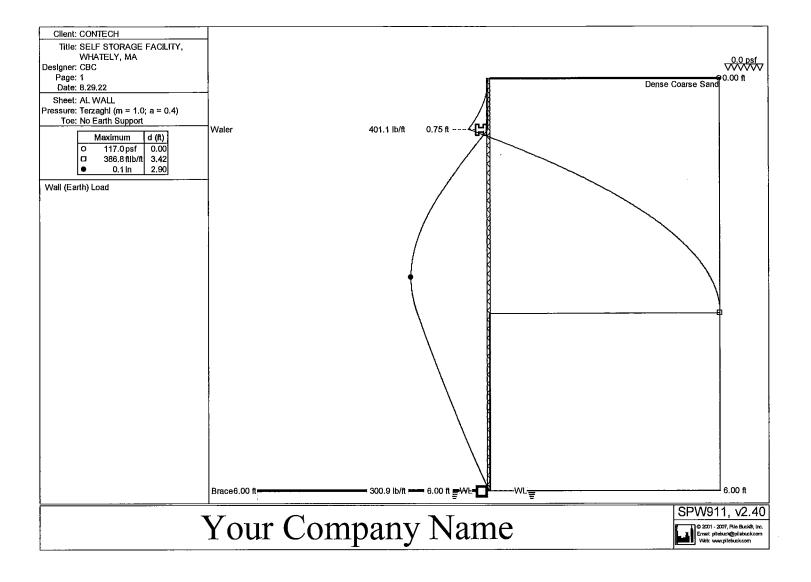
Project Name:	Self Stor	age Fa	cility			CRM #:		29
Location:	Wha	tely, MA	\			Date:	8/11/2	022
H, Height of Cover			5] (ft.))	Enter Structure H	ere:	
s structure adequate to carry	/ the load?		017		[7	R1	
S, Span					[11.33		(ft.)
R, Rise					[7.167		(ft.)
Crown Gage					[2		
Crown Rib Spacing					[18		(in.)
Crown Rib Type					[Type IV		
launch Gage					[2		
Haunch Rib Spacing					[54		(in.)
Haunch Rib Type					ſ	Type II		
Number of Wheels per Axle			4]		Use Above Plate/	Rib Values?	
Live Loading Type			HL-93]	[Yes		
		Та	undem Control	s				
A _L , Sum of Axle Loads			50	_ kip)		(12.9.4	4.2)
C ₁ , Adjustment Factor			0.727	_	τv	pical Wheel/Load	(12.9.4	4.2)
C ₂ , Adjustment Factor			1.00	_	Ċc	ombinations: 20: 4 wheels	(12.9.4	4.2)
C _{il} , Adjusted Live Load	$C_{II} = C_1 C_2 A_L$		36.33	_ kip	_	ndem: 4 wheels	(12.9.4	4.2)
C _H , Crown Soil Cover Factor	$C_{H} = 1.15 - \left(\frac{H - 1.4}{14}\right) > 1$		1.000	_			(12.9.4	.4-1)
R _H , Haunch Moment Reducti			1.00	_			(Table 12.	9.4.3-3)
o, Density of Cover Material			0.12	(kc	f)		(12.9.4	.2-1)
_{Ev} , Redundancy Factor			1.05				(1.3.4, 1	2.5.4)
ונ, Redundancy Factor			1				(1.3.4, 1	2.5.4)
γ _{εν} , Dead Load Factor			1.5				(Table 3.	.4.1-2)
γ _{LL} , Live Load Factor	,		2.00]			(12.9.4	4.2)
K ₁ , Live Load	lf:		0.094	- ^	09			
Moment Calculator	8' < S < 20'	Then:		$K_1 = \frac{0}{\left(\frac{H}{S}\right)}$	$\frac{108}{100}$		(12.9.4	.2-4)
	20' < S < 25'-6"	Then:	S < 20'	$K_1 = \frac{0.08}{2}$		$\frac{1}{(S-20)}$	(12.9.4	.2-5)
<₂, Live Load ∕Ioment	if:		12.500	_	$\left(\overline{s}\right)$		(12.9.4	4.2)
noment Calculator	1.4' < H < 3.0'	Then:		K ₂ = 0.5	4 H ² - ().4H + 5.05	(12.9.4	.2-6)
	3.0' < H < 5.0'	Then:		K ₂ = 1.9	0H + 3		(12.9.4	.2-7)


Page 1 of 2 These results are submitted to you as a guideline only, without liability on the part of Contech Engineered Solutions LLC for accuracy or suitability to any particular application, and are subject to your verification.

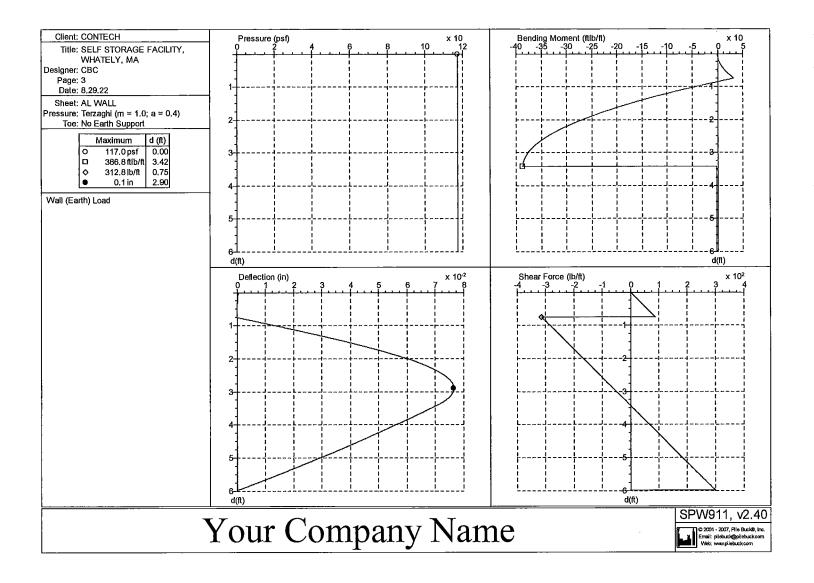
Structural Design Check for Corrugated Aluminum Plate Box Culvert Per AASHTO LRFD Bridge Design Specifications, Section 12, 9th Edition 2020



M _{dt} , Dead Load		3.895	(kip-ft./ft)		(12.9.4.2-1)
Moments	$M_{dl} = f \{S^{3}[0.005]$	[3-0.00024(S-12)]+0.05	$\frac{1}{3(H-1.4)S^2}$	}	
M _{II} , Live Load Moments	$M_{II} = C_{II}K_1 \ge S/K_2$	3.104	(kip-ft./ft)		(12.9.4.2-3)
M _{dtu} , Factored DL Moments	$M_{dlu} = \eta_{EV} \gamma_{EV} M_{dl}$	6.134	(kip-ft./ft)		(12.9.4.2)
M _{ilu} , Factored LL Moments	$M_{IIu} = \eta_{LL} \gamma_{LL} M_{II}$	6.208	(kip-ft./ft)		(12.9.4.2)
M _{pc} , Crown Plastic Moment Resistance	$M_{pc} = C_{H}P_{c}(M_{diu} +$	M _{Itu})	See Calcs Be	elow	(12.9.4.3-1)
M _{ph} , Haunch Plastic Moment Resistance	$M_{ph} = C_{H}(1.0-P_{c})$	(M _{ðlu} +R _H M _{llu})	See Calcs Be	elow	(12.9.4.3-2)
M _{pca} , Allowable Crown Plastic Moment	Provided by Rib Type, Rib Spacing, and	10.42	(kip-ft./ft)		
M _{pha} , Allowable Haunch Plastic Moment	Provided by Rib Type, Rib Spacing, and	4.62	(kip-ft./ft)		
S, Span (ft.)	11.33				
Tabl	e 12.9.4.3-1	* calculate P_c using m	naximum allowa	able M _{pca} or max P _c	
Span (ft.) < 10.0	Allowable Range of P _c	$P_c = M_{pca} / C_H(M_{dlu} + M_{dlu})$	l ₁₁₀)		(Eq. 3.1)
10.0 - 15.0 15.0 - 20.0	0.50 - 0.70	Pc	= 0.7000		
20.0 - 25.4	0.45 - 0.60	* Calculate M _{ph} using	the P _c from pre	evious step.	
		$M_{ph} = C_{H}(1.0 - P_{c})[M_{d}]$	_{lu +} M _{ilu} (R _h)]		(Eq. 3.2)
		M _{ph} :	= 3.703	$\Phi_{ij} = \Phi_{ij}^{(i)} \sum_{j=1}^{n-1}$	
V, Unfactored Footing Reaction	$V = \rho \left(\frac{HS}{2.0} + \frac{S}{40}\right)$	$\left(\frac{2}{0.0}\right) + \frac{A_L}{8 + 2(H+R)}$	(kip/ft.)		(12.9.4.5-1)
Unfactored DL Unfactored LL		3.78 1.54	,		
R _v , Vertical Reaction	R _v = (V)cos∆	5.140	(kip/ft.)	downward	
R _H , Horizontal Reaction	R _H = (V)sin∆	1.416	(kip/ft.)	outward	


Page 2 of 2 These results are submitted to you as a guideline only, without liability on the part of Contech Engineered Solutions LLC for accuracy or suitability to any particular application, and are subject to your verification.

Client: CONTECH			Ĭnn	ut Data					
Title: SELF STORAGE FACILITY, WHATELY, MA Designer: CBC	Depth Of Excavation = 6.00 ft Depth Of Active Water = 6.00 ft Surcharge = 240.0 psf Depth Of Passive Water = 6.00 ft				Water Density = 62.40 pcf Minimum Fluid Density = 31.82 pcf				
Page: 2	Soil Profile								
Date: 8.29.22	Depth (ft) Soil Name γ (pcf) γ' (pcf) C (psf) C_a (psf) $\phi(^\circ)$ $\delta(^\circ)$ K_a K_{ac} K_p K_{pc}								
Sheet: AL WALL	0.00 Dense Coarse Sand	120.	00 57.60	0.0	0.0 34.0 17.0	0.25 0.00 5	48 0.00		
Pressure: Terzaghl (m = 1.0; a = 0.4) Toe: No Earth Support				1					
Wall (Earth+Live) Load	Sheet		<u> </u>	lution					
					Maximum Bending			Pile	
	Sheet Name	l(in∜ft) E(psi				Upstand (ft)			
	AL WALL	1.50 1E+0	7 1.13	24000.0	2260.0	0.00	0,00	6.00	
	Load Model: Hinge Method								
	Supports				Maxima				
	Linear Depth (ft) Type Load (lb/ft)						kimum	Depth	
	0.75 Waler 606.9				Bending Mo	ment 5	35.2 ftlb/f	F 1	
	6.00 Brace 455.1				Deflection Pressure	1	0.1 in 77.0 psf	2,90 ft 0.00 ft	
					Shear Force		73.2lb/ft	0.00 ft	
								1	
		•	Υ					SPW9	11, v2.40
	Your Company Name								ilebuci@pilebuck.com



Client: CONTECH	·											,			
Title: SELF STORAGE FACILITY,	depth	Р	М	D	F	depth	Р	м	D	F	depth	Р	M	D	F
WHATELY, MA	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	<u>(ft)</u>	(psf)	(ftlb/ft)	(in)	(ib/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)
Designer: CBC	0.00	177.0	0.0	0.0	0.0	2.02	177.0	-410.2	0.1	-248.4	4.04	177.0	-2.3	0.1	108.2
Page: 4	0.05	177.0	0.2	0.0	9.8	2.07	177.0	-422.4	0.1	-239.6	4.09	177.0	-2.3	0.1	118.0
Date: 8,29,22	0.11	177.0	0.9	0.0	18.7	2.12	177.0	-435.4 -446.7	0.1	-229.8 -221.0	4.14	177.0	-2.3	0.1 0.1	126.8 136.5
Sheet: AL WALL Pressure: Terzaghi (m = 1.0; a = 0.4)	0.16	177.0	2.2	0.0	28.5	2.18	177.0		0.1		4.19 4.25	177.0 177.0	-2.3 -2.3	0.1	
Toe: No Earth Support	0.21	177.0 177.0	3.8 6.1	0,0 0,0	37.4 47.2	2.23 2.28	177.0 177.0	-458.6 -470.0	0.1 0.1	-211.3 -201.5	4.25	177.0	-2.3	0.1	146.3 155.1
Wall (Earth+Live) Load	0.27	177.0	9,0	0.0	47.2 57.0	2.20	177.0	-479.8	0.1	-201.5	4.30	177.0	-2.3	0.1	164.9
	0.32	177.0	9.0 12.0	0.0	57.0 65.9	2.34	177.0	-479.8	0.1	-192.7	4.35	177.0	-2.3	0.1	173.7
	0.37	177.0	12.0	0.0	75.7	2.35	177.0	-499.1	0.1	-174.1	4.46	177.0	-2.3	0.1	183.4
	0.42	177.0	20.3	0.0	85.5	2.50	177.0	-508.5	0.1	-164.4	4.51	177.0	-2.3	0.1	193.2
	0.48	177.0	20.3	0.0	94.4	2.50	177.0	-508.3	0.1	-154.6	4.57	177.0	-2.3	0.1	202.0
	0.53	177.0	24.8 30.2	0.0	94.4 104.2	2.55	177.0	-517.3	0.1	-134.8	4.62	177.0	-2.3	0.1	202.0
	0.56	177.0	30.2	0.0	104.2	2.60	177.0	-524.8	0.1	-145.8	4.62	177.0	-2,3	0.1	211.5
	0.69	177.0	42.1	0.0	122.9	2.03	177.0	-539.8	0.1	-126.3	4.73	177.0	-2.3	0.1	230.4
	0.74	177.0	47.9	0.0	132.7	2.76	177.0	-545.9	0.1	-117.4	4.78	177.0	-2.3	0.1	240.1
	0.80	177.0	27.5	0.0	-465.3	2.81	177.0	-552.1	0.1	-107.7	4.83	177.0	-2.3	0.1	248.9
	0.85	177.0	2.1	0.0	-455.5	2.87	177.0	-557.3	0.1	-98.9	4.88	177.0	-2.3	0.0	258.7
	0.90	177.0	-22.7	0.0	-445.8	2.92	177.0	-562.5	0.1	-89.1	4.94	177.0	-2.3	0.0	268.4
	0.96	177.0	-44.8	0.0	-436.9	2.97	177.0	-567.2	0.1	-79,4	4.99	177.0	-2.3	0.0	277.3
	1.01	177.0	-68.6	0.0	-427.2	3.03	177.0	-570.9	0.1	-70.5	5.04	177.0	-2.3	0.0	287.0
	1.06	177.0	-89,7	0.0	-418.3	3.08	177.0	-574.6	0.1	-60,8	5,10	177.0	-2.3	0.0	295.8
	1.12	177.0		0.0	-408.6	3.13	177.0	-577.7	0.1	-51.1	5,15	177.0	-2.3	0.0	305.6
	1.17	177.0		0.0	-398.9	3,19	177.0	-580.0	0.1	-42.2	5,20	177.0	-2.3	0.0	315.3
	1.22	177.0	-154.5	0.0	-390.0	3.24	177.0	-582.1	0.1	-32.5	5,26	177.0	-2,3	0.0	324.2
	1.27	177.0		0.0	-380.3	3.29	177.0	-583,5	0.1	-23.6	5.31	177.0	-2.3	0.0	333.9
	1.33	177.0	-194.5	0.0	-371.4	3,35	177.0	-584.6	0.1	-13.9	5.36	177.0	-2.3	0.0	343.6
	1.38	177.0	-214.7	0.1	-361.7	3.40	177.0	-585.1	0.1	-4.2	5.42	177.0	-2.3	0.0	352.5
	1.43	177.0	-234,3	0.1	-352.0	3.45	177.0	-2.3	0.1	4.7	5.47	177.0	-2.3	0.0	362.2
	1.49	177.0	-251.7	0.1	-343.1	3.50	177.0	-2.3	0.1	14.4	5.52	177.0	-2.3	0.0	371.1
	1.54	177.0	-270,4	0.1	-333.4	3.56	177.0	-2.3	0.1	24.1	5.58	177.0	-2.3	0.0	380.8
	1.59	177.0	-288.5	0.1	-323.7	3.61	177.0	-2.3	0.1	33.0	5.63	177.0	-2.3	0.0	390.5
	1.65	177.0	-304.4	0.1	-314.8	3.66	177.0	-2.3	0.1	42.7	5.68	177.0	-2.3	0.0	399.4
	1.70	177.0	-321.5	0.1	-305.1	3.72	177.0	-2.3	0.1	51.6	5.73	177.0	-2.3	0.0	409.1
	1.75	177.0	-336.6	0.1	-296.2	3.77	177.0	-2.3	0.1	61.3	5.79	177.0	-2.3	0.0	418.9
	1.81	177.0	-352.6	0.1	-286.5	3.82	177.0	-2.3	0.1	71.1	5.84	177.0	-2,3	0.0	427.7
	1.86	177.0	-368.1	0.1	-276.7	3.88	177.0	-2.3	0.1	79.9	5.89	177.0	-2.3	0.0	437.4
	1.91	177.0	-381.8	0.1	-267.9	3.93	177.0	-2.3	0.1	89,6	5.95	177.0	-2.3	0.0	446.3
	1.96	177.0	-396.3	0.1	-258.2	3,98	177.0	-2.3	0.1	98,5	6.00	177.0	0.0	0.0	0.0
	r					~	-						SP		v2.40
-	Yoi	ir (Co	mŗ	Dar	ıy ſ	Na	me)				أغبأ	© 2001 - 2007, I Email: pilebuck Web: www.pile	

		Input Data		
Client: CONTECH Title: SELF STORAGE FACILITY,	Depth Of Excavation = 6.00 ft Dep	th Of Active Water = 6.00 ft	Water Density = 62.40	nof
WHATELY, MA		of Passive Water = 6.00 ft	Minimum Fluid Density = 31.82	
Designer: CBC			······	
Page: 2 Date: 8.29.22	Soil Profile Depth (ft) Soil Name	γ (pcf) γ' (pcf) C (psf) C	$C_a (psf) \phi(°) \delta(°) K_a K_{ac} K_p K$	- -
Sheet: AL WALL	0.00 Dense Coarse Sand		$\begin{array}{c c} C_{a} \ (ps1) \ \phi(^{\circ}) \ \delta(^{\circ}) \ K_{a} \ K_{ac} \ K_{p} \ K \\ \hline 0.0 \ 34.0 \ 17.0 \ 0.25 \ 0.00 \ 5.48 \ 0. \end{array}$	рс 00
Pressure: Terzaghi (m = 1.0; a = 0.4)	0.00 Dense Coarse Sand	120.00 57.00 0.0	0.0 34.0 17.0 0.20 0.00 3.40 0.	00
Toe: No Earth Support		Solution		
Wall (Earth) Load	Sheet	<u></u>		
	Sheet Name	(in⁴/ft) E (psi) Z (in³/ft) f (psi)	Maximum Bending Moment (ftlb/ft) Upstand (ft) Toe (Pile (ft) Length (ft)
	AL WALL	1.50 1E+07 1.13 24000.0	2260.0 0.00 0.	
	Load Model: Hinge Method		., k , d ,	
	Supports		Maxima	
	Linear		Maximum	n Depth
	Depth (ft) Type Load (lb/ft)		Bending Moment 386.8 ft	b/ft 3.42 ft
	0.75 Waler 401.1		Deflection 0.1 in	
	6.00 Brace 300.9		Pressure 117.0ps	
			Shear Force 312.8lb	/π 0.75 π
<u> </u>				SPW911, v2.40
	Your Comp	bany Name		© 2001 - 2007, Pile Buck@, Inc. Email: pilebuck@pilebuckcom Web: www.pilebuckcom
	A	. 🖌		

.

Client: CONTECH															
Title: SELF STORAGE FACILITY.	depth	Р	м	D	F	depth	Р	м	D	F	depth	Р	м	D	F
WHATELY, MA	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(ib/ft)	(ft)	(psf)	(ftlb/ft)	(in)	(lb/ft)
Designer: CBC	0.00	117.0	-0.2	0.0	0.6	2.02	117.0	-271.2	0.1	-164.2	4.04	117.0	-1,5	0.1	71.5
Page: 4	0.05	117.0	0.0	0.0	7.0	2.07	117.0	-279.2	0.1	-158.4	4.09	117.0	-1,5	0.1	78.0
Date: 8.29.22	0.11	117.0	0.5	0,0	12.9	2.12	117.0	-287.8	0.1	-151.9	4.14	117.0	-1.5	0.1	83.8
Sheet: AL WALL	0,16	117.0	1.3	0.0	19.3	2.18	117.0	-295.3	0.1	-146.1	4.19	117.0	-1.5	0.1	90.3
Pressure: Terzaghi (m = 1.0; a = 0.4)	0.21	117.0	2.4	0.0	25.2	2.23	117.0	-303.1	0.1	-139.6	4.25	117.0	-1.5	0.0	96.7
Toe: No Earth Support	0.27	117.0	4.0	0.0	31.6	2.28	117.0	-310.7	0,1	-133.2	4.30	117.0	-1.5	0.0	102.5
Wall (Earth) Load	0.32	117.0	5.9	0.0	38.0	2.34	117.0	-317.2	0.1	-127.4	4.35	117.0	-1.5	0.0	109.0
	0.37	117.0	7.9	0.0	43.9	2.39	117.0	-324.0	0.1	-120.9	4.41	117.0	-1.5	0.0	114.8
	0.42	117.0	10.5	0.0	50.3	2.44	117.0	-329.9	0.1	-115.1	4.46	117.0	-1.5	0.0	121.3
	0.48 0.53	117.0	13.4	0.0	56.7	2.50	117.0	-336.1	0.1	-108.6	4.51	117.0	-1.5	0.0	127.7
		117.0	16.4	0.0	62.6	2.55	117.0	-341.9	0.1	-102.2	4.57	117.0	-1.5	0.0	133.6
1	0.58 0.64	117.0 117.0	20.0 23.6	0.0 0.0	69.0 74.9	2.60 2.65	117.0 117.0	-346.9 -352.0	0.1 0.1	-96.4 -89.9	4.62 4.67	117.0 117.0	-1.5	0.0 0.0	140.0
	0.64	117.0	23.6	0.0	74.9 81.3	2.03	117.0	-352.0	0.1	-89.9	4.6/	117.0	-1.5 -1.5	0.0	146.4
	0.69	117.0	27.8	0.0	87.7	2.76	117.0	-350.6	0.1	-83.5	4.73	117.0	-1.5 -1.5	0.0	152.3 158.7
	0.74	117.0	18,1	0.0	-307.5	2.70	117.0	-365.0	0.1	-71.0	4.78	117.0	-1.5	0.0	164.6
	0.85	117.0	1.4	0.0	-307.5	2.87	117.0	-368.4	0,1	-65.3	4.83	117.0	-1.5	0.0	171.0
	0,90	117.0	-15.0	0.0	-294.7	2.07	117.0	-371.8	0.1	-58.9	4.00	117.0	-1.5	0.0	177.4
	0.96	117.0	-29.6	0.0	-288.8	2.97	117.0	-374.9	0.1	-52,5	4.99	117.0	-1.5	0.0	183.3
	1.01	117.0	-45.3	0.0	-282.4	3.03	117.0	-377.4	0.1	-46.6	5.04	117.0	-1.5	0.0	189.7
	1.06	117.0	-59.3	0.0	-276.5	3.08	117.0	-379.8	0.1	-40.2	5.10	117.0	-1.5	0.0	195.6
	1.12	117.0	-74.4	0.0	-270,1	3,13	117.0	-381.9	0.1	-33.8	5,15	117.0	-1.5	0.0	202.0
	1.17	117.0	-89.1	0.0	-263.7	3.19	117.0	-383.4	0.1	-27.9	5.20	117.0	-1.5	0.0	208.4
	1.22	117.0	-102.1	0.0	-257.8	3.24	117.0	-384.8	0.1	-21.5	5.26	117.0	-1.5	0.0	214.3
	1.27	117.0	-116.1	0.0	-251.4	3.29	117.0	-385.7	0.1	-15.6	5,31	117.0	-1.5	0.0	220.7
	1.33	117.0	-128.6	0.0	-245.5	3.35	117.0	-386.4	0.1	-9,2	5,36	117.0	-1,5	0.0	227.2
	1.38	117.0	-141.9	0.0	-239,1	3,40	117.0	-386.8	0.1	-2,8	5.42	117.0	-1.5	0.0	233.0
	1.43	117.0	-154.9	0.0	-232.7	3,45	117.0	-1.5	0,1	3.1	5,47	117.0	-1.5	0.0	239.4
	1.49	117.0	-166.4	0.0	-226.8	3.50	117.0	-1.5	0.1	9.5	5.52	117.0	-1.5	0.0	245.3
	1.54	117.0	-178.7	0.0	-220.4	3.56	117.0	-1.5	0.1	16.0	5.58	117.0	-1.5	0.0	251.7
	1.59	117.0	-190.7	0.0	-213.9	3.61	117.0	-1.5	0.1	21.8	5.63	117.0	-1.5	0.0	258.2
	1.65	117.0	-201.3	0.0	-208.1	3.66	117.0	-1.5	0.1	28.3	5.68	117.0	-1.5	0.0	264.0
	1.70	117.0	-212.5	0.0	-201.7	3.72	117.0	-1.5	0.1	34.1	5.73	117.0	-1.5	0.0	270.4
	1.75	117.0	-222.5	0.1	-195.8	3.77	117.0	-1.5	0.1	40.5	5.79	117.0	-1.5	0.0	276.9
	1.81	117.0	-233.1	0.1	-189.4	3.82	117.0	-1.5	0.1	47.0	5.84	117.0	-1.5	0.0	282.7
	1.86	117.0	-243.4	0.1	-182.9	3.88	117.0	-1.5	0.1	52.8	5.89	117.0	-1.5	0.0	289.2
	1.91	117.0	-252.4	0.1	-177.1	3.93	117.0	-1.5	0.1	59.3	5.95	117.0	-1.5	0.0	295.0
	1.96	117.0	-261.9	0.1	-170.6	3.98	117.0	-1.5	0.1	65.1	6.00	117.0	0.0	0.0	0.0
	<u></u> τ						. .						SP	W911,	v2.40
-	You	ir (U0	mŗ	Dar	ıy [Na	me)					© 2001 - 2007, F Email: pilebuckt Web: www.pile	Bpliebuckcom

ALUMINUM WINGWALL CALCULATIONS: PROJECT NAMNE: SELF STORAGE FACILITY, WHATELY, MA DESIGN SECTION AT THE END OF THE PANEL BASED ON AASHTO LRFD DESIGN:

WALL GEOMETRY:

Height of wall (ft) (design)

φ

WALL SECTION PROPERTIES:

Type

0.15	1.5	1.131	1000000	24000
Thickness (in)	l (in^4/ft)	S(in^3/ft)	E (psi)	Allowable stress (psi)

Corrugated Aluminum Plate

Notes:

Wingall has been analysed using SPW911 V 24 two dimensional analysis and the results superimposed (See the attached SPW 911 Output) Both service and strength case analyzed using the appropriate load factors.

both service and strength case analyzed using the appropriate load factory HORIZONTAL EARTH LUYE LOAD SURCHARGE 240 Days of the post live load surcharg	re appropriate oad factors. Load from lateral service for anchored walls AASHTO LRFD C3.11.5.7 240 psf live load surcharge considered

LOAD FACTORS AND COMBINATION ANALYSIS: BASED ON AASHTO LKFD 2012 BRIDGE DESIGN SPECIFICATIONS TABLE 3,4,1-1 AND 3

STRENGTH CASE II HORIZONTAL EARTH LOAD(ES-AEP) LUVE LOAD SURCHARGE (LS)	1.3
STRENGTH CASE ANALYSIS (CRITICAL) LOAD FACTORS STRENGTH CASE I	
HORIZONTAL EARTH LOAD (ES-AEP)	1.35
LIVE LOAD SURCHARGE (LS)	1.75
OUTPUT RESULTS FROM SPW911V2.4 ANALYSIS	

WALE LOAD (lbs/ft)

DEPTHS (ft)	ES	ม
0.75	401.1	205.8

	ู่ป	198.4
-ft/ft)	53	386.8
Moment (lbs-ft/l	DEPTHS (ft)	3.42

•

Maximum Wall Deflections(in)

TYPE	DEAD LOAD	LIVE LOAD	TOTAL
SERVICE CASE 1	0.1	0	0.1

BACKFILL PROPERTIES

120	34
Unit weight of backfill (pcf)	Friction angle

STRENGTH CASE ANALYSIS: DESIGN OF WALES (Standard Contech Wale Beam Alloy 6061-T6)

				1.59
7.5.4.1) 7.4.2.1)		4 × 4		TABLE 7.5.4.1) TABLE 7.4.2.1) Plastic section modulus (in^3) Design yield strength =0.9*30000
0.8 (AASHTO LRFD DESIGN TABLE 7.5.4.1) 5.073 (CONTECH STANDARD) 38000 (AASHTO LRFD DESIGN TABLE 7.4.2.1) 192774	MAX MOMENTS (lbs-ft/ft)	2282.3 o.k	ATE)	 3.8 (AASHTO LRFD DESIGN 13 (CASHTO LRFD DESIGN 00 (AASHTO LRFD DESIGN 00 (AASHTO LRFD DESIGN 13/4" dia threads)
Фи.Мп фи= 5xx (п^3) 5.1 Ptu(psi) 381 Mn 192 PHE WALES (lbs-ft/ft)			INUM STRUCTURAL PL	Φu: Mn Φu ψu= 4u= Soc (inv3) 33 Ftu(psi) 300 Ftu(psi) 300 Mn 339 o.k 49.5 Max Tensile Stress (psi) 335
ft) 12851.6 DS AND MOMENTS IN 1	STRENGTH CASE 1	901.6	L (CORRUGATED ALUMI	Be-ft/ft CASE 1 B B CASE 1 CASE 1 A CASE 1 A
Moment Capacity (Ibs-ft/ft) 00.1.Mn 12851.6 0u= Sex (In-3) Ftu(ps) 3 Mn Mn 11 FACTORED WALE LOADS AND MOMENTS IN THE WALES (Ibs-ft/ft)	DEPTHS (ft)	0.75	2) DESIGN OF ALSP WALL (CORRUGATED ALUMINUM STRUCTURAL PLATE)	MOMENT CAPACITY (Ibs-ft/ft) 2260.0 PLASTIC MOMENT CAPACITY (Ibs-ft/ft) 3180 FACTORED MOMENTS IN THE WALES [Ibs-ft/ft DEPTHS (It) 3140 FACTORED MOMENTS IN THE WALES [Ibs-ft/ft] 3140 712 712 712 712 712 712 712 712

Structural Plate Footing Reactions

Per AASHTO Standard Specifications for Highway Bridges, Section 12

Project Name:	Self Storage Facility						
Location:	Whately, MA						
Tandem (HL93) Live Load							
Corrugation =	ALBC						
Shape =	ALBC 11'-4" Span x 7'-2" Rise	ALBC					
Span (S) =		ft.					
Rise (R) =	7.17	ft.					
	5.67						
Bottom Span =	11.33	ft.					
Area (A) =	65.0	sq. ft.					
Footing contact angle (fca) =		degrees					
Height of cover (H) =	5.00	ft.					
Axle Load =	Tandem (HL93)	lbs.					
Number of Lanes =	1						
Axle Load (AL) =	50,000	lbs.					
Soil Density =	120	lbs./cu. ft.					

Total Load, V = Live Load + Dead Load

Live Load, LL =	AL/(8 + 2(H + R))	
Live Load =	1,546	lbs./foot/footing

lbs./foot/footing	
-------------------	--

Aluminum Box Culvert

Dead Load per foot 3,785 lbs/ft/footing Dead Load = 3,785 lbs./foot/footing Total Load, V = 5,332 lbs./foot/footing		il density x (HS/2,000 + S	2/40,000)*1000 lbs/kip
Total Load, V = 5,332 lbs./foot/footing	Dead Load per foot	3,785	lbs/ft/footing
Total Load, V = 5,332 lbs./foot/footing			11 <i>14 1 1</i>
FOOTING REACTIONS	Dead Load =	3,785	lbs./foot/footing
FOOTING REACTIONS		F 000	lles the stife stime
	10tal Load, V =	5,332	phitoot/toot/ing
Vertical	FOOTING REACTIONS Vertical		

R _v =	V x cos(fca)		
R _{V,LL} =	1,491		
R _{V,DL} =	3,649		
R _v ⊺otal =	5,140	lbs./foot/footing	
Horizontal			
R _H =	V x sin(fca)		
R _{H,LL} =	411		
R _{H,DL} =	1,005		
R _H ⊺otal =	1,416	lbs./foot/footing	<u>outward</u>

Use these Unfactored Reactions for preliminary footing design unless it is known that Factored Reactions are required.

These results are submitted to you as a guideline only, without liability on the part of Contech Engineered Solutions LLC for accuracy or suitability to any particular application, and are subject to your verification.

720,529

Date: 9/20/2022

Merlin #:

Manual Unfactored Reactions	No		•
Loads:			
Vertical Load (Dead Load) per leg, RyDL	3.65	kips/ft	
Vertical Load (Dead + Live Load) per leg, R _{V,DL+LL}	5.14	kips/ft	
Horizontal Load (Dead Load) per leg, R _{H.DL}	1.01	kips/ft	
Horizontal Load (Dead + Live Load) per leg, R _{H,DL+LL}	1.42	kips/ft	
Footing Design:			`
Overburden Depth, d _r	0.00	ft	
Net allowable bearing pressure, q_a	4000	lbs/ft ²	
Gross allowable bearing pressure	4000	lbs/ft ²	
Include Soil over Heel	Yes		
Trial footing width, b	1.91	ft	
Footing width, B	2.50	ft	
Footing offset, o	5.50	in	
Toe width, W _t	0.79	ft	
Heel width, W _h	1.71	ft	
Footing depth, D	2.00	ft	
Footing Type	Keyway		
Keyway depth, k _d	4.00	in	
Bearing Pressures and Eccentricity:			
Total vertical Load, Fv	8.38	kip/ft	
Total moment, M	10,54	kip-ft/ft	
Moment Arm, L	1.26	£.	
Eccentricity, e	0.01	ft	
Gross bearing pressure at toe, q _{toe}	3294	lbs/ft ²	< gross allowable, O
Gross bearing pressure at heel, q _{heel}	3414	lbs/ft ²	< gross allowable, O

Vertical Forces:		
CANDE Dead Load Ry	3649.42	lbs
R _v ', soil above structure	3649.42	lbs
$\Delta R_{\rm V} = R_{\rm V} - R_{\rm V}$	0.00	lbs
у	12.167	ft
x	0.000	ft
θ	0,00	degrees
x' = W _h =	1.71	ft
Additional Soil	2494	lbs
Centroid	1.646	ft (from toe)
Description	Force	
Culvert vertical reaction, R _v	5.14	kip/ft
Footing weight, P _f	0.750	kip/ft
Weight of soil over heel, P _h	2.49	kip/ft
Sum of vertical forces, Fv	8.38	kip/ft
Description	Moment Arm	
Culvert vertical reaction, Rv	0.79	ft
Footing weight, P _f	1.25	ft
Weight of soil over heel, P _h	1.646	ft
Description	Moment	
Culvert vertical reaction, Rv	4.07	kip-ft/ft
Footing weight, P _f	0.94	kip-ft/ft
Weight of soil over heel, P _h	4.10	kip-ft/ft
Sum of vertical forces, Fv	9.11	kip-ft/ft

These results are submitted to you as a guideline only, without liability on the part of Contech Engineered Solutions LLC for accuracy or suitability to any particular application, and are subject to your verification.

Horizontal Forces:							
Determine Active or Passive condition behind footing:							
Z_1 12.17 ft							
	14,17	A					
Active Pressures:	11,17	1.0					
$p_1 = K \gamma_s Z_t$	481.8	lbs/ft ²					
$p_3 = K \gamma_s Z_f$	561.0	lbs/ft ²					
Culvert horizontal Reaction, R _H	-1.42	kip/ft					
Active Pressure Force (Po)	0.953	kip/ft					
Calculated friction coefficient, f_s	0.055						
Actual friction force, F _f	0.463	kip/ft					
F _{fmax}	3.773	kip/ft					
Sum of horizontal forces, F _H	0.000	kip/ft					
Po + Ff,max >= Rh	Active	•					
Passive pressure behind footing: (Used for FS SI	JDING calcu	lation)					
Passive pressure coefficient, K _p	0.30						
Passive Pressures:							
$p_1 = K_p \gamma_s Z_t$	440.1	lbs/ft ²					
$p_3 = K_p \gamma_s Z_f$	512.5	lbs/ft ²					
$P_p = 1/2(p_1+p_3)(D)/1000 =$	0.953	kips					
Moment arm = $1/3(D)(p_3+2*p_1)/(p_1+p_3) =$	0.975	ft					
$p_{1,max} = K_{p,max} \gamma_s Z_t =$	3650	lbs/ft ²					
$p_{3,max} = K_{p,max} \gamma_s Z_f =$	4250	lbs/ft ²					
$P_{p,max} = 1/2(p_{1,max}+p_{3,max})(D)/1000 =$	7.90	kips					
Active pressure inside:							
Description	Force						
Culvert horizontal Reaction, R _H	-1.42	kip/ft					
Passive pressure behind wall, P _p	0.953	kip/ft					
	Moment Arm						
Culvert horizontal Reaction, R _H	1.67	ft					
Passive pressure behind wall, P _p	0.97	ft					
Description	Moment						
Culvert horizontal Reaction, R _H	2.36	kip-ft/ft					
Passive pressure behind wall, P_p	-0.93	kip-ft/ft					
Sum of horizontal forces, F _H	1.43	kip-ft/ft					

			ENG
Check Stability:			1
ΣM _R	11.47	kip-ft/ft	1
ΣM_D	0.93	kip-ft/ft	
FS Overturning = $\Sigma M_R / \Sigma M_D$	12.4	_	> 1.5 O.K.
ΣF_R	11.67	kip/ft	
ΣF_{D}	1.42	kip/ft	
FS Sliding = $\Sigma F_R / \Sigma F_D$	8.2		> 1.5 O.K.
ooting Unreinforced Bending Check:			1
q at inside footing	3331.76	lbs/ft ²	-
F _s Toe	2.623	kip/ft	
F _s Heel	5.762	kip/ft	
x toe	0.396	ft	
x heel	0.854	ft	
M _{S,Toe}	1.04	kip-ft/ft	
M _{S,Heel}	2.79	kip-ft/ft	heel bending controls
У	10,00	in	
I	8000	in ⁴	
$\sigma_{t,allow}$	99.61	lbs/in ²	
σ _{ι,actual}	41.87	lbs/in ²	OK unreinforced
bed in the former of the star			1
ooting Reinforcement: (Bending, Factored Lo		T	4
Live Load Percentage of R_v Weighted load factor for ultimate bearing pressures	19.53% 1.404		
		lbs/ft ²	
Ju,toe	4625	lbs/ft ²	
q _{u,heel}	4794		
q _u at inside footing	4678.72	lbs/ft ²	
F _u Toe	3.68	kip/ft	
F _u Heel	8.09	kip/ft	
x toe x heel	0.396 0.854	ft ft	
M _{u,Toe}	1.46	kip-ft/ft	
M _{u,Heel}	4.14	kip-ft/ft	heel bending controls
esign reinforcement:			1
Mu	4.14	kip-ft/ft	1
1.2M _{cr}	37.95	kip-ft/ft	
(4/3)M _u	5.52	kip-ft/ft	
Design Moment	5,522	kip-ft/ft	
Rebar clear cover	3	in	
d	16.69 17.6471	in	
m R _u	22	lbs/in⁴	
ρ	0.0004		
Pmin	0.0004		
ρ _{max}	0.0214		
A _{s,req'd}	0.0738	in²/ft	
A _{s,actual}	0.2045	in ² /ft	
φM _n	15.221	kip-ft/ft	ок
Horizontal bars:	#5@	18 in	
Longitudinal bars:	#5 @	18 in	
			7
heck Shear in Footing:			4
$q_u @ d$ from inside of arch leg	4584.9	lbs/ft²	1
$q_u @ d$ from outside of arch leg	4772.6	lbs/ft ²	
φΫͼ	16.15	kip/ft	
V _u toe		kip/ft	Critical section outside of to
V _u heel	1.06	kip/ft	Heel shear OK

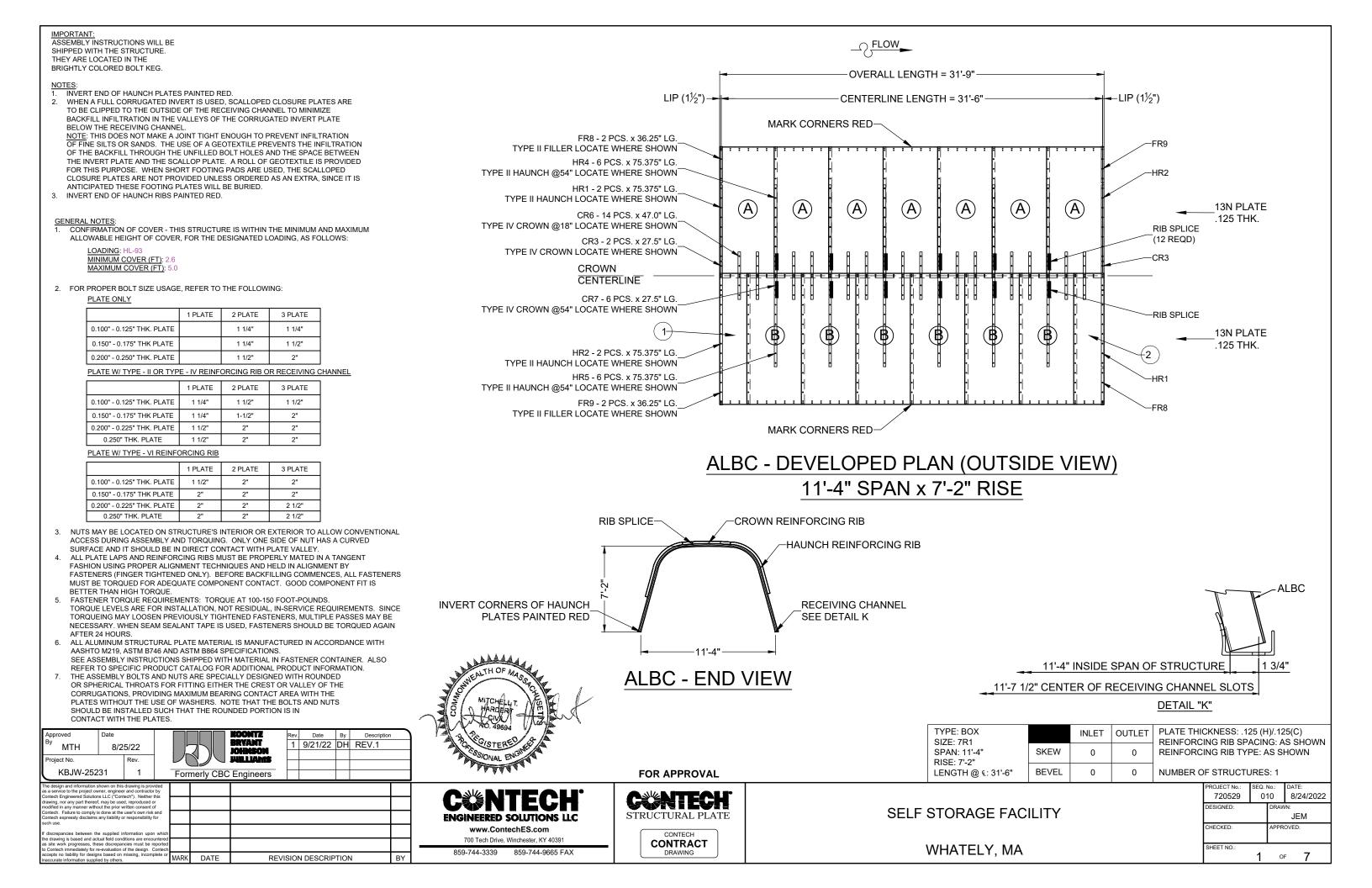
These results are submitted to you as a guideline only, without liability on the part of Contech Engineered Solutions LLC for accuracy or suitability to any particular application, and are subject to your verification.

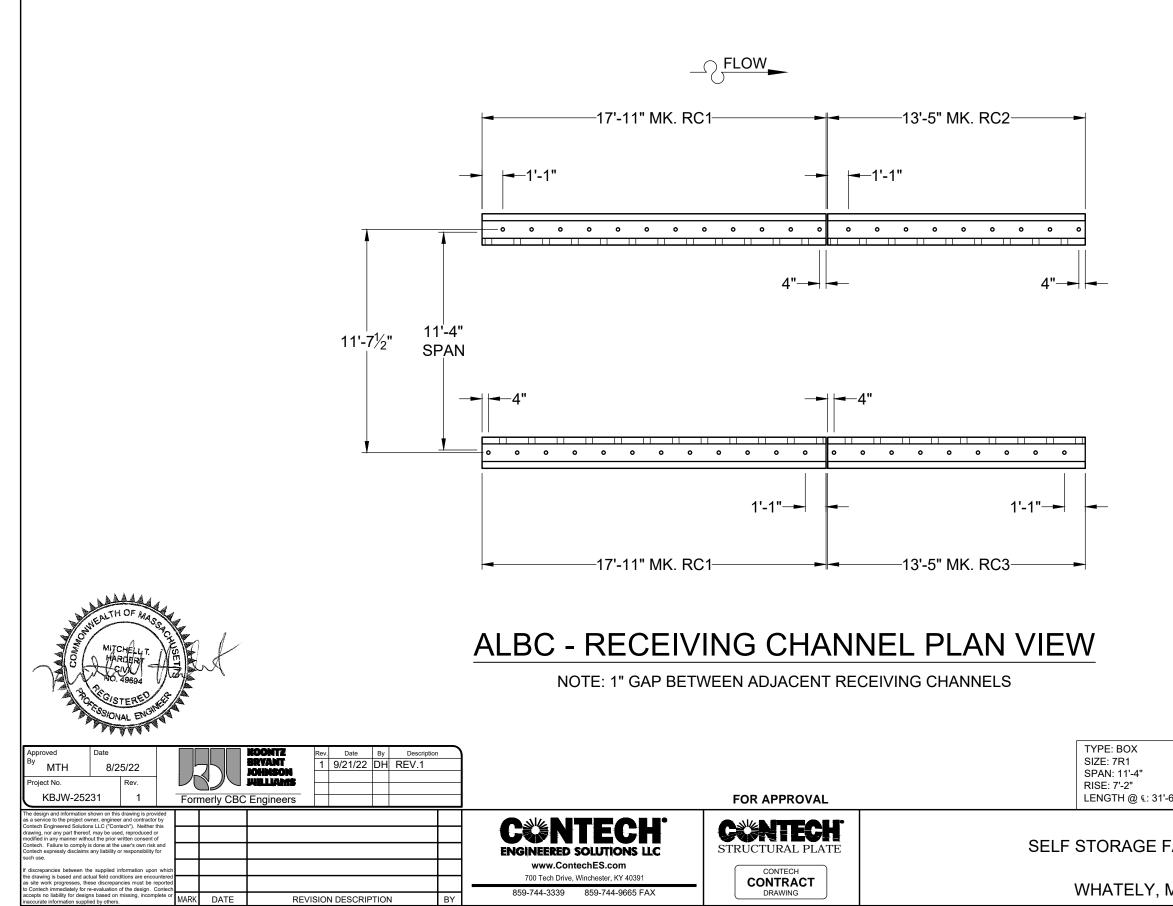
2.00

Î

Reinforced Concrete Properties:]			
Concrete unit weight, γ _e	150	lbs/ft ³				
Concrete strength, f	4000	lbs/in ²				
Reinforcing steel strength, f	60000	lbs/in ²				
		100/111	1			
Soil Properties:]			
Soil unit weight, y _s	120	lbs/ft ³	1			
Internal friction angle, ϕ	32	degrees				
Angle of wall friction, δ	24	degrees				
Earth pressure	Active	-				
Active pressure coefficient, Ko	0.33					
Maximum passive pressure coefficient, K _{p,max}	2.5					
Maximum friction coefficient, fmax	0.45					
Footing Reinforcement:						
A _{s,req'd}	Bar size a	and spacing	A _{s,actual}			
Horizontal Bar - 0.074	#5 @	<u>1</u> 8 in	0.205	OK		
Longitudinal Bar - 0.144	#5 @	18 in	0.205	OK		
Summary of Stability After Construction						
FS Overturning	12,4	> 1.5 O.K.				
FS Sliding	8.2	> 1.5 O.K.				
Footing Shear						
		tion outside a	f toe			
Heel	Heel shear	ОК				
			Wsoil	Outside Culvert		
			Ţ	(Soil Side)	Inside Cu	است.
		_	1.71	(3011 31de)		iven
			1.71		Rv	
				Rh	1/	
					<u>↓ ↓</u>	
4			1.1		등 방법에 선물	
	Frec	-		이 나는 것을 같다.		t.
Ftri		the second s		ena pore sulla	a fatter i de la stra	-

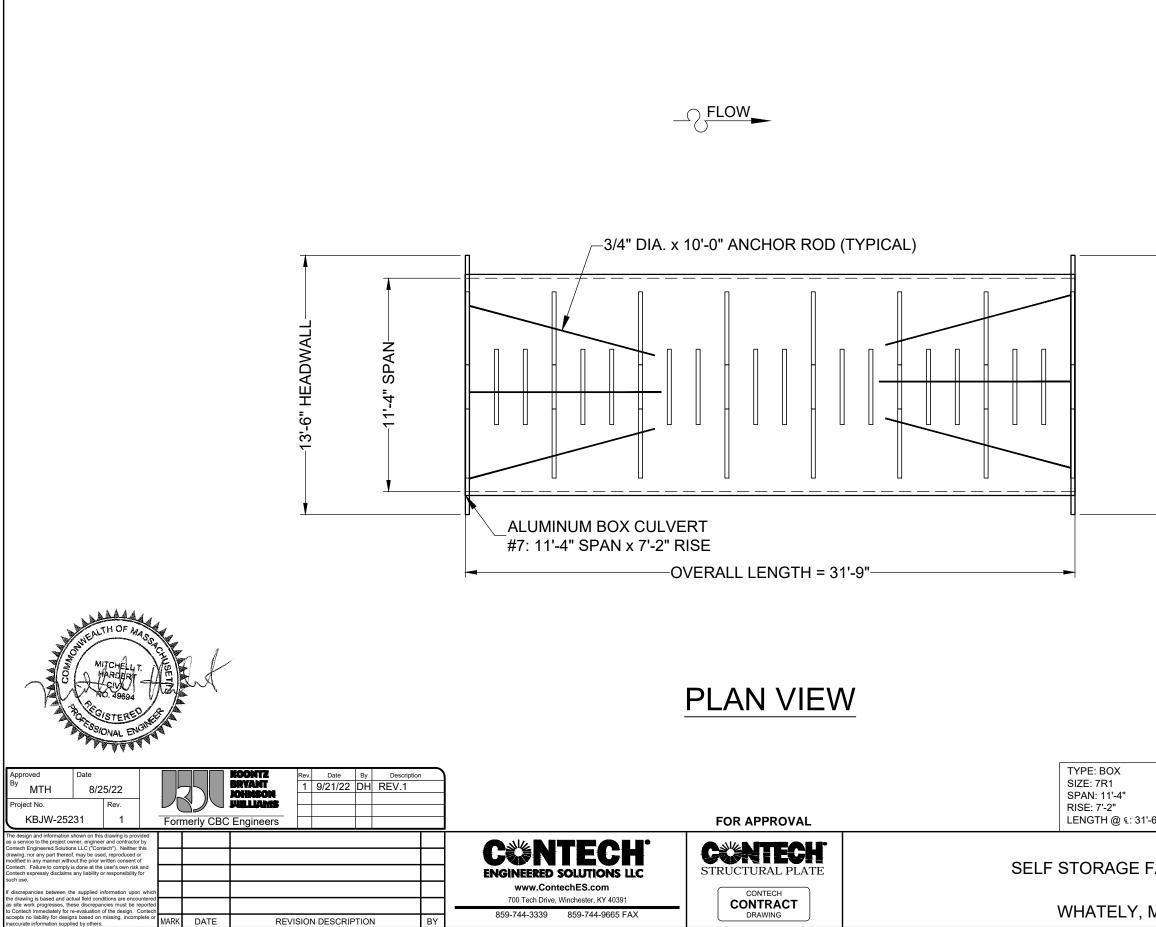
Ptri


Prec


These results are submitted to you as a guideline only, without liability on the part of Contech Engineered Solutions LLC for accuracy or suitability to any particular application, and are subject to your verification.

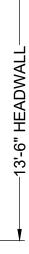
2.50

APPENDIX B


CONTECH SHOP DRAWINGS

				REINFORC	ING RIB SP	ACIN	IG· A	SS	HOWN
	SKEW	0	0		ING RIB TY				
·6"	BEVEL	0	0	NUMBER OF STRUCTURES: 1					
					PROJECT No .:	SEQ. I	No.:	DATE	
					720529	01	10	8/2	24/2022
FAC	ILITY				DESIGNED:		DRAW	'N: JE	M
					CHECKED:		APPR	OVED:	
MA					SHEET NO .:	2	OF	-	7

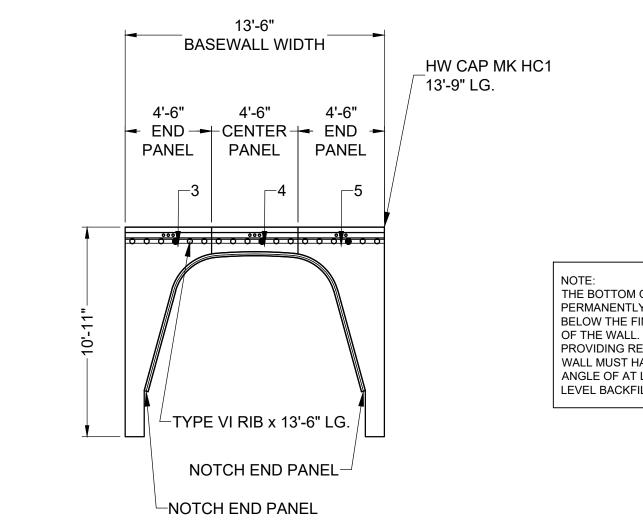
		INLET	OUTLET	PLATE THICKNESS: .125 (H)/.125(C) REINFORCING RIB SPACING: AS SHOWN				· · /
	SKEW	0	0	REINFORCING RIB TYPE: AS SHOWN				
·6"	BEVEL	0	0	NUMBER OF STRUCTURES: 1				
				PROJECT No.: SEQ. No.: DATE: 720529 010 8/24/202			DATE: 8/24/2022	
FAC	ILITY				DESIGNED:		DRAW	JEM



supplied by others

	SKEW	0	0	REINFORCING RIB TYPE: AS SHOWN
·6"	BEVEL	0	0	NUMBER OF STRUCTURES: 1
				PROJECT No.: SEQ. No.: DATE: 720529 010 8/24/2022
FAC	ILITY			DESIGNED: DRAWN: JEM
				CHECKED: APPROVED:
MA				SHEET NO.: 3 OF 7

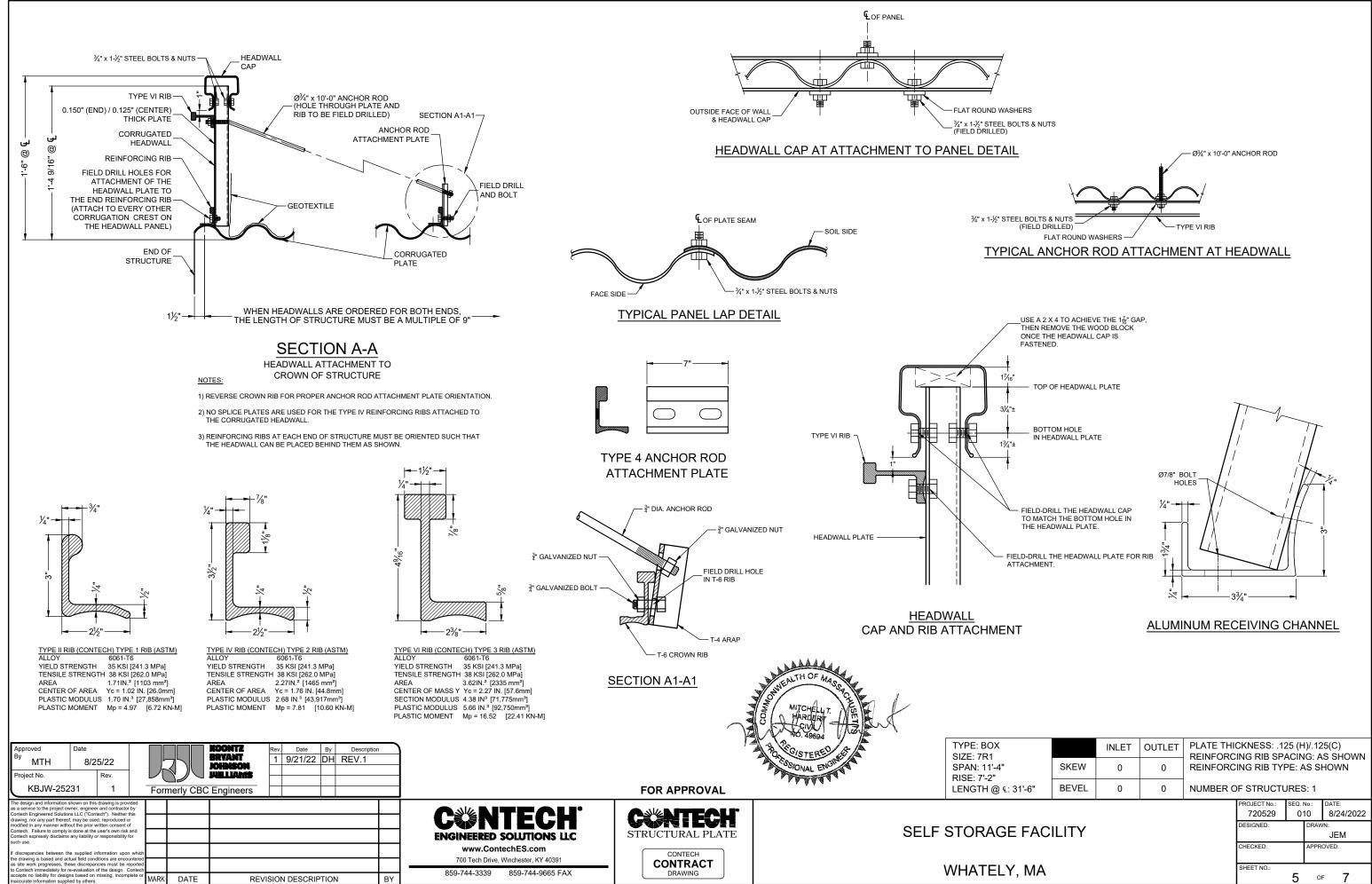
PLATE THICKNESS: .125 (H)/.125(C)

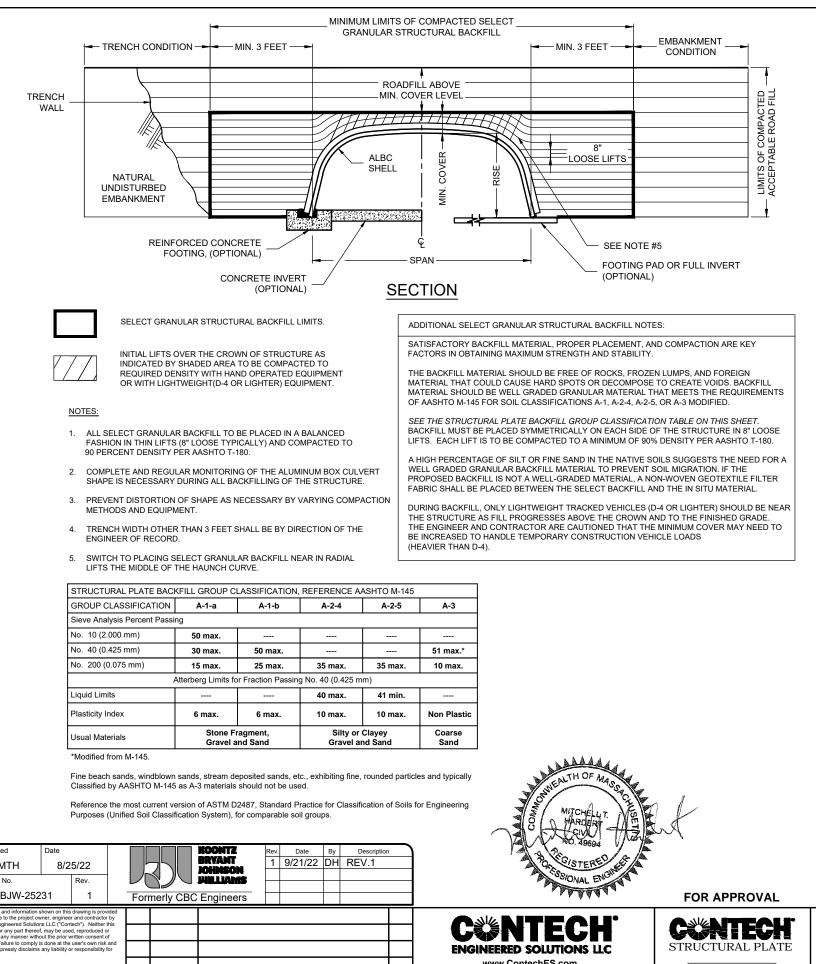

REINFORCING RIB SPACING: AS SHOWN

INLET

OUTLET

- NOTES: 1. ALL MARK IDENTIFICATIONS TO BE ON SOIL SIDE.
- 2. BOLT HEADWALL TO REINFORCING RIB AT END OF STRUCTURE.
- SEE SHEET 5 FOR SECTION AND ASSEMBLY DETAILS. 3.
- ALL 2'-3" DIMENSIONS ARE RELATIVE TO SECTION B-B. 4.
- 5. ALL 4 1/2" DIMENSIONS ARE RELATIVE TO SECTION E-E.
- 6. DENOTES BOLTS
 7. DENOTES RODS





ALBC - INLET AND OUTLET EXPANDED END VIEW

A PARAGE						
Approved Date Rev. Date By Description By MTH D(25/22 DH REV.1		TYPE: BOX SIZE: 7R1	INLET		PLATE THICKNESS: .125 (H)/ REINFORCING RIB SPACING	
By MTH 8/25/22 BRYANT 1 9/21/22 DH REV.1 Project No. Rev. Image: March and a state of the st		SPAN: 11'-4" RISE: 7'-2"	SKEW 0		REINFORCING RIB TYPE: AS	
KBJW-25231 1 Formerly CBC Engineers	FOR APPROVAL	LENGTH @ £: 31'-6"	BEVEL 0	0	NUMBER OF STRUCTURES:	: 1
The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.	CONTECH ENGINEERED SOLUTIONS LLC	SELF STORAGE FACI	LITY		PROJECT No.: SEQ. No. 720529 010 DESIGNED: DI	o.: DATE: 0 8/24/2022 DRAWN: JEM
If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as alls work progresses, these discrepancies must be reported to Contech immediately for evaluation of the design. Contech immediately for evaluation of the design. Contech immediately to revealuation of the design. Contech immediately to revealuation of the design. Contech immediately for evaluation of the design of the des	www.ContechES.com CONTECH 700 Tech Drive, Winchester, KY 40391 CONTRACT 859-744-3339 859-744-9665 FAX	WHATELY, MA			CHECKED: AF SHEET NO.: 4	APPROVED: OF 7

THE BOTTOM OF ALL WINGWALL PANELS MUST BE PERMANENTLY EMBEDDED AT LEAST 2.25 FEET BELOW THE FINISHED GROUNDLINE AT THE FACE OF THE WALL. THE SOIL IN FRONT OF THE WALL PROVIDING RESISTANCE TO THE TOE OF THE WALL MUST HAVE A MINIMUM INTERNAL FRICTION ANGLE OF AT LEAST 34° (TO BE FIELD VERIFIED). LEVEL BACKFILL SLOPE BEHIND WALLS.

Appro By

Projec

The desig as a servic Contech E drawing, r modified in Contech. Contech e such use. f discreps the drawir as site wo

1.0 STANDARDS AND DEFINITIONS

- 1.1 STANDARDS All standards refer to the current ASTM/AASHTO edi unless otherwise noted
- ASTM B-864 "Standard Specification for Corrugated Aluminum Box C 1.1.1 (AASHTO Designation M-219).
- 1.1.2 AASHTO Standard Specification for Highway Bridges Section 12 Division I - Design, AASHTO LRFD Bridge Design Specifications Section 12
- 1.1.3 AASHTO Standard Specification for Highway Bridges Section 26 Division II Construction, AASHTO LRFD Bridge Construction Specifications - Section 26. ASTM B789, Standard Practice for Installing Corrugated Aluminum Structural Plate Pipe.
- 1.2 DEFINITIONS
- 1.2.1 Engineer In these specifications the word "Engineer" shall mean the Engineer of Record or Owner's designated engineering represer
- 1.2.2 Manufacturer In these specifications the word "Manufacturer" shall mean CONTECH ENGINEERED SOLUTIONS.
- 1.2.3 Contractor In these specifications the word "Contractor" shall mean the firm or corporation undertaking the execution of any installation work under the terms of these specifications.

2.0 GENERAL CONDITIONS

- 2.1 Any installation guidance provided herein shall be endorsed by the engineer; discrepancies herein are governed by the Engineer's plans specifications.
- 2.2 The Contractor shall furnish all labor, material and equipment and perform all work and services except those set out and furnished by t Owner, necessary to complete in a satisfactory manner the site preparation, excavation, filling, compaction, grading as shown on the plans and as described therein. This work shall consist of all mobiliza . clearing and grading, grubbing, stripping, removal of existing materia unless otherwise stated, preparation of the land to be filled, filling of spreading and compaction of the fill, and all subsidiary work necessa complete the grading of the cut and fill areas to conform with the lines grades, slopes, and specifications. This work is to be accomplished u the observation of the Owner or his designated representative.
- 2.3 Prior to bidding the work, the Contractor shall examine, investigate ar inspect the construction site as to the nature and location of the work the general and local conditions at the construction site, including wit imitation, the character of surface or subsurface conditions and obsta to be encountered on and around the construction site and shall mak such additional investigation as he may deem necessary for the plan and proper execution of the work.

If conditions other than those indicated are discovered by the Contract the Owner shall be notified immediately. The material which the Contractor believes to be a changed condition shall not be disturbed that the owner can investigate the condition

- 2.4 The construction shall be performed under the direction of the Engine
- 2.5 All aspects of the structure design and site layout including foundatio backfill, end treatments and necessary scour consideration shall be performed by the Engineer.

*Modified from M-145.			
Fine beach sands, windblown sands, stream de Classified by AASHTO M-145 as A-3 materials	eposited sands, etc., exhibiting fine, rounded particles a s should not be used.	and typically	
Reference the most current version of ASTM D Purposes (Unified Soil Classification System), f	02487, Standard Practice for Classification of Soils for E for comparable soil groups.	ingineering MITCHELLIT. MARDER	
proved Date BRYANT MTH 8/25/22 DOM: DOM: DOM: DOM: DOM: DOM: DOM: DOM:	1 9/21/22 DH REV 1	TO STERED A	TYPE: BOX SIZE: 7R1 SPAN: 11'-4"
oject No. Rev. WILLIAM		OSIONAL ENGINE	RISE: 7'-2"
KBJW-25231 1 Formerly CBC Enginee	ers	FOR APPROVAL	LENGTH @ 年: 31'-6"
tesign and information shown on this drawing is provided service to the project owner, engineer and constractor by chick Engineered Solutions LLC ("Contech"). Neither this ng, not any part thereof, may be used, reproduced or ledin any manner without the proir own tikes and chick. Failure to comply is done at the user's own risk and ch expressly dictains any liability or responsibility for		CONTECH ENGINEERED SOLUTIONS LLC	SELF STORAGE FACI
use. crepancies between the supplied information upon which wwork progresses, these discrepancies must be reported tech immediately for re-evaluation of the design. Contect- tist no liability for designs based on missing, incomplete or use information surgicity but offers. MARK DATE	REVISION DESCRIPTION BY	www.ContechES.comCONTECH700 Tech Drive, Winchester, KY 40391CONTRACT859-744-3339859-744-9665 FAXDRAWING	WHATELY, MA
Interinformation supplied by others. MARK DATE	REVISION DESCRIPTION BY		

	3.0	ASSE	BLY AND IN	STALLATION					
tion		3.1	and/or ASTM accordance	1 A-449. The l with the plate	m to the requirer box culvert shall layout drawings	be assembled provided by the	in Ə	7	
Culverts	5			e tightened us	manufacturer's r ing an applied to)	
		3.2	The box culv and specifica AASHTO Sta 26 Division I	rert shall be in ations, the ma andard Specif	stalled in accord nufacturer's recc ication for Highw n/AASHTO LRF 5.	ommendations, ay Bridges - Se	and ection	n	
itative.		3.3	structurally a plans. Poor c	dequate. The juality in situ e	e made in embar trench width shal mbankment mat backfill as directe	II be shown on f erial must be re	the move		
nauve.		3.4	soil-bearing p accommodat	pressure of 4,0	igns require a mi 000 psf. Lower be specific design fo oting.	earing capacitie		be	
and			support the s removed and material. The by utilizing a qualified geo	tructure's bac replaced to a specific deptl geosynthetic	the natural found kfill, the poor mat suitable depth w n of excavation re reinforced founda neer. For addition intative.	terial shall be ex vith competent equired may be ation as designe	reduc reduc	ed, ed	
tion		3.5	minimum of 6 particle size	inches of loo of one half the material requir	s used, the soil be se granular mate corrugation dep red shall conform	erial with a maxi th. The proper v	mum vidth c	of	
l the lan ry to s, ınder	nd,		service life. T grade to avoit the structure should be fre	he bedding sl d distortions to and/or rapid c e of rock form	cal to both struct nould be construct hat may create u leterioration of th ations, protruding atter that may cau	cted to uniform ndesirable stres e roadway. The g stones, frozer	line ar sses ir bed hlump	ı s,	
nd , and hout acles e ning		3.6	Manufacture handled with over gravel re	r's instructions reasonable ca ock and shall l	mbled in accorda All plates shall I are. Plates shall r be prevented from lent in trench or o	be unloaded an not be rolled or m striking rock o	dragg		
ctor, so eer. ns,			of the invert Circumferent downstream the box culve or flexible foo the upstream outside of the	or footing pad ial seam laps plates as asse ert is installed oting pad, asse end. Downstre upstream rin	ert or on flexible s shall start at the shall shingle ove embly progresses on a concrete foc embly of the struc- ream rings of plat gs (Circumferent from the inside or	e downstream e r the top of the s upstream. Wh oting, full metal cture shell shall tes shall be ass ial seams are s	end. ether invert, start a emble	at d	
		3.7	material that A-2-4, A-2-5	meets the real or A-3 modif	cfilled using clear quirements for so ied per AASHTO up classification	oil classification M-145. See the	is A-1, he		
			structure in 8	3 inch loose lif	mmetrically on e ts. Each lift shall nsity per AASHT	be compacted			
		3.8	limits for an	Aluminum Box	at meet the perm Culvert are not tely and paveme	allowed on the		ure	
			feasible or p	ermissible for ires are limite	soil for heavy co Aluminum Box (d in the range of	Culverts. By des	sign,		
			highway live	load design li	that exceed that mits are not allow from the Enginee	wed on Alumin		x	
		3.9	select granul deadman an	lar structural b chor system.	nd/or wingwall s backfill limits sha Contact the Engi the wingwalls a	I extend past ti ineer if stiff mat	he terial c	or	
			INLET	OUTLET	PLATE THI				
	SK	EW	0	0		ING RIB SP ING RIB TY			
6"	BE	VEL	0	0	NUMBER C		_		DATE
						PROJECT No.: 720529	SEQ. 0	10	DATE: 8/24/2022
AC	ILI	ΓY				DESIGNED:		DRAW	JEM
						CHECKED:		APPR	OVED:
1 ^						SHEET NO .:			

OF

6

7

FOUNDATION NOTES:

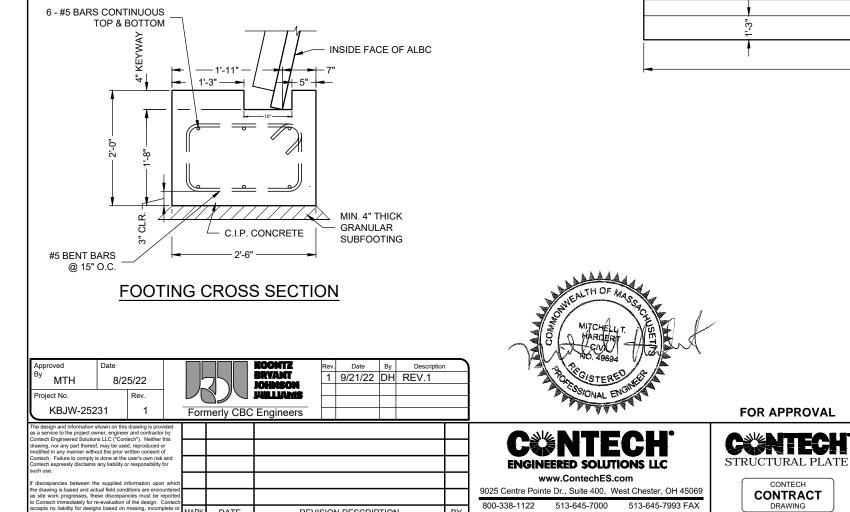
THE ENGINEER SHALL VERIFY THAT THE PROPOSED FOUNDATION IS APPROPRIATE FOR THE SITE CONDITIONS AND THE DESIGN PARAMETERS ARE CONSISTENT WITH THE PROJECT REQUIREMENTS. THE FOUNDATION DESIGN CONSIDERS STRUCTURAL REQUIREMENTS OF THE FOUNDATION ONLY. HYDRAULIC ANALYSIS AND SCOUR ANALYSIS, AS REQUIRED, SHALL BE PERFORMED OR COORDINATED BY THE ENGINEER.

PRIOR TO CONSTRUCTION, CONTRACTOR MUST VERIFY ALL ELEVATIONS SHOWN WITH THE ENGINEER.

FOUNDATION DESIGN IS BASED ON SITE SOIL INFORMATION PROVIDED TO CONTECH AND DESCRIBED IN THE DESIGN PARAMETERS BELOW. FOUNDATION BEARING SOILS, INCLUDING ANY SOIL IMPROVEMENTS REQUIRED, SHALL BE EVALUATED AND APPROVED BY OTHERS PRIOR TO FOUNDATION CONSTRUCTION. IF UNEXPECTED SOIL CONDITIONS ARE ENCOUNTERED, OR THE BEARING REQUIREMENTS CANNOT BE ACHIEVED, CONTECH MUST BE NOTIFIED TO DETERMINE IF FOOTING DESIGN CHANGES ARE NEEDED.

REINFORCED CONCRETE SHALL CONFORM TO THE REQUIREMENTS OF THE AASHTO LRFD BRIDGE CONSTRUCTION SPECIFICATIONS, SECTION 8, REINFORCED CONCRETE, FOR CLASS A CONCRETE HAVING A MINIMUM COMPRESSIVE STRENGTH OF 4,000 PSI.

REINFORCING STEEL FOR FOUNDATIONS SHALL CONFORM TO ASTM A615, GRADE 60 (Fy=60 ksi).


KEYWAY TO BE FILLED WITH NON-METALLIC, NON-SHRINK GROUT, WITH A MINIMUM 4,000 PSI COMPRESSIVE STRENGTH (ASTM C1107). GROUT AND SHIMMING MATERIAL SHOULD NOT CONTAIN ANY CORROSION-PROMOTING AGENTS.

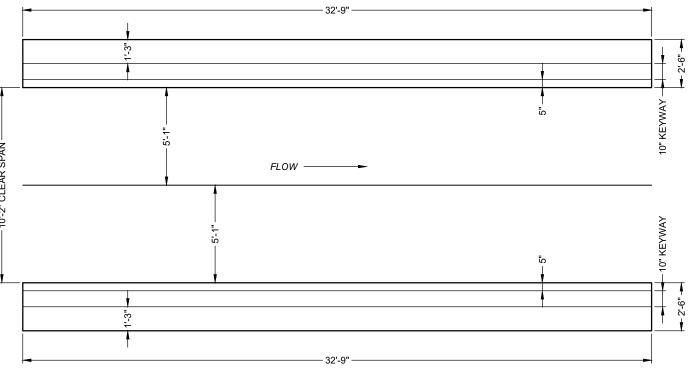
DESIGN PARAMETERS:

DESIGN LIVE LOAD: HL-93 DESIGN MAXIMUM FILL HEIGHT: 2.6' (MIN.) 5.0' (MAX.) DESIGN METHOD: LOAD FACTOR DESIGN PER AASHTO SPECIFICATION DESIGN MINIMUM NET ALLOWABLE BEARING CAPACITY: 4,000 PSF

MARK DATE

tion supplied by others

REVISION DESCRIPTION

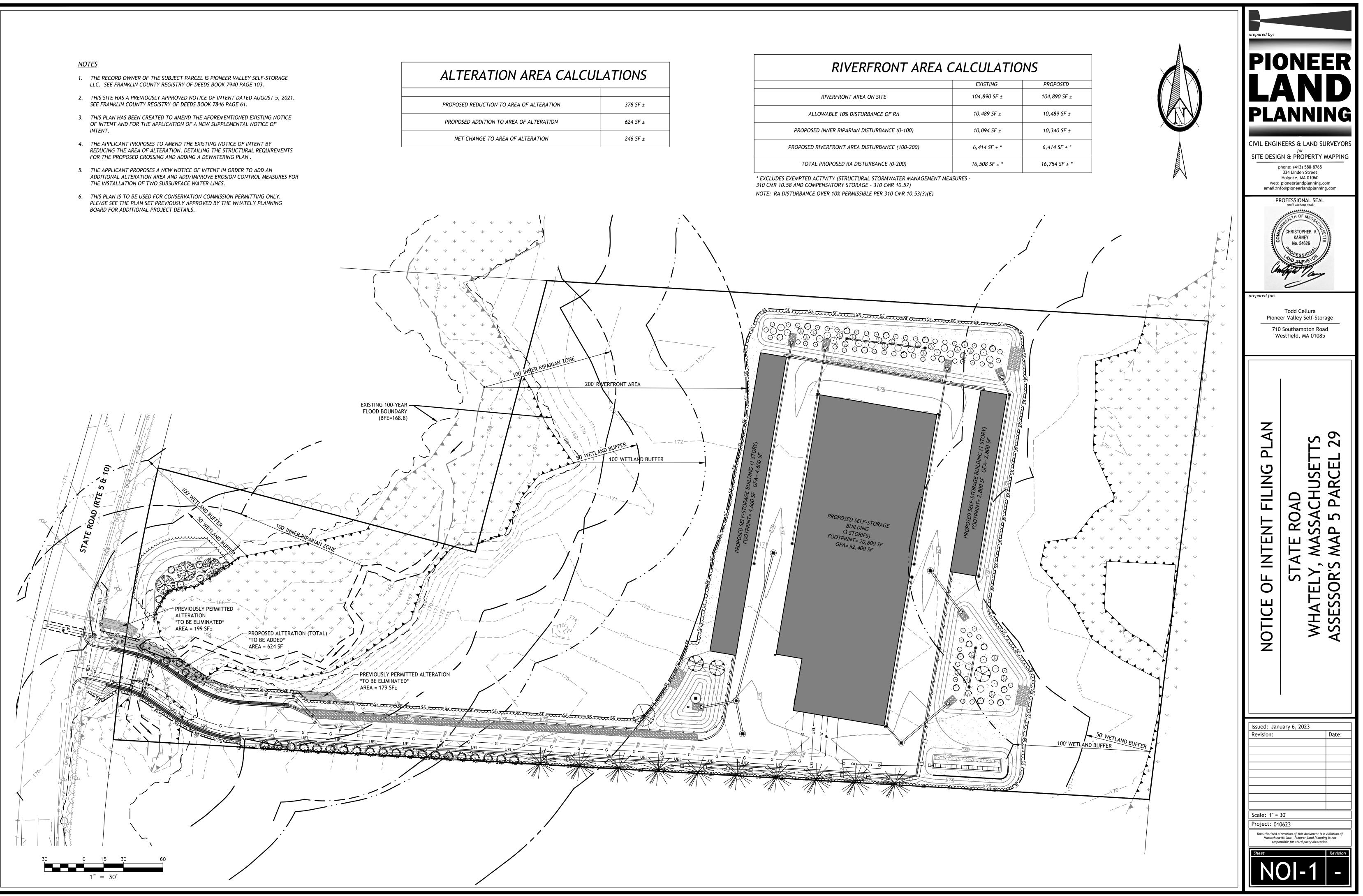

800-338-1122

BY

513-645-7000

513-645-7993 FAX

DRAWING



FOUNDATION PLAN

SELF STORAGE F.

WHATELY, N

	PROJECT No.: 720529	SEQ. N 01		DATE 8/2	: 4/2022	
ACILITY	DESIGNED: DRAWN				JEM	
	CHECKED:		APPRO	VED:		
MA	SHEET NO .:	7	OF		7	

TERATION AREA CALCULATIONS				
DSED REDUCTION TO AREA OF ALTERATION	378 SF ±			
OSED ADDITION TO AREA OF ALTERATION	624 SF ±			

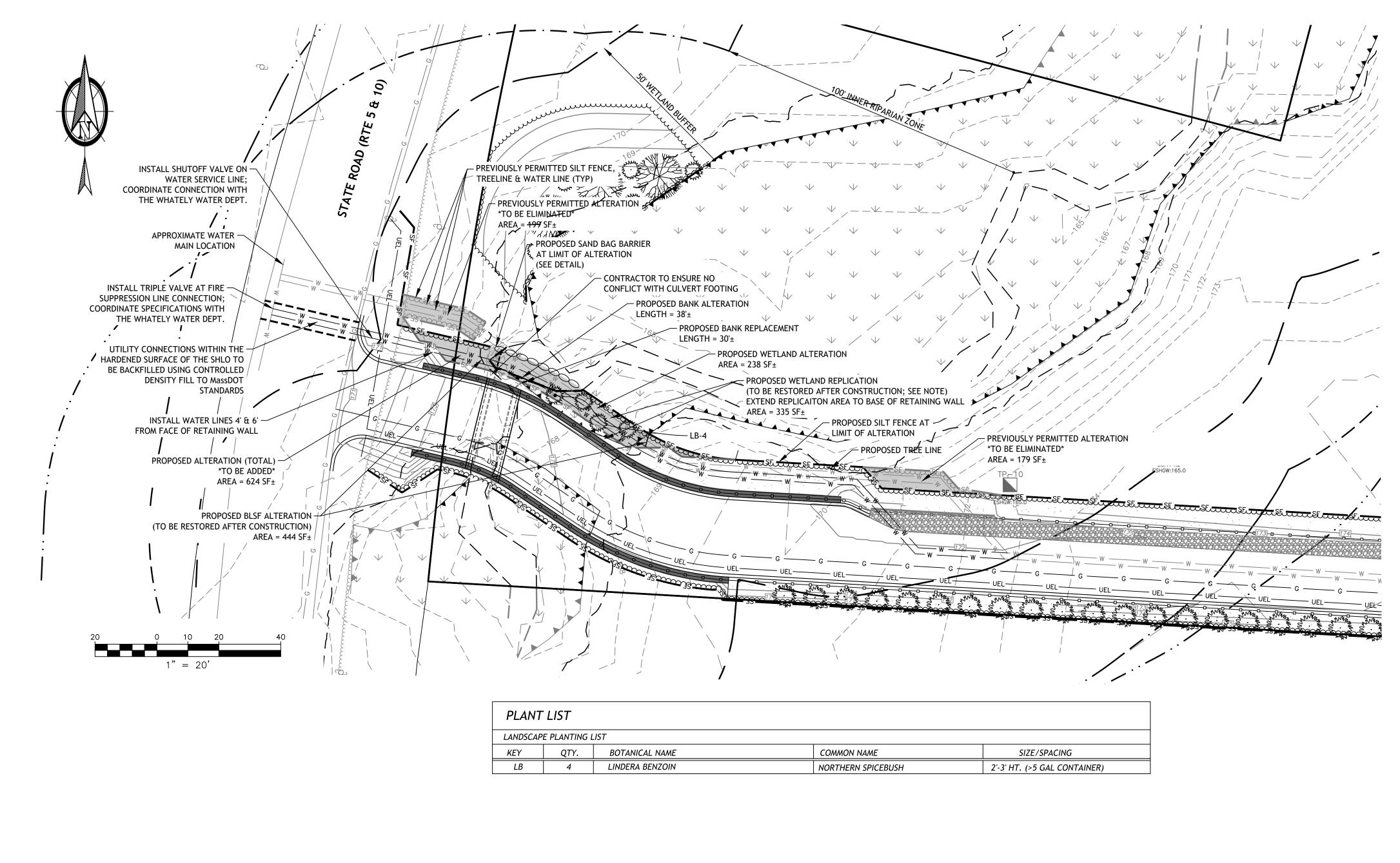
STREAM BED CONSTRUCTION SEQUENCE

- 1. CREATE AN ARMORED LOW FLOW CHANNEL WITHIN THE NEW CULVERT
- 2. BURY 3-6-INCH ROUNDED NATURAL STONE 14 INCHES DOWN (BELOW THE ELEVATION OF THE CULVERT)
- 3. USE MIRAFI/ GEOTEXTILE FABRIC BELOW THE NATURAL STONE
- 4. COVER THE STONE WITH SILT FROM BELOW THE EXISTING CULVERT TO MATCH THE SUBSTRATE OF THE EXISTING STREAM
- SET ASIDE THE EXISTING STREAM SEDIMENT, AFTER THE REMOVAL OF THE EXISTING CULVERT, AND COVER WITH A TARP BEFORE RE-USING WITHIN THE NEW CULVERT
- 6. MATCH THE CHANNEL ELEVATION ABOVE AND BELOW THE CULVERT
- 7. THE PLACEMENT OF THE FABRIC, STONE, AND SEDIMENT WILL BE DONE BEFORE PLACING THE NEW CULVERT OVER THE CHANNEL.

DEWATERING NOTES

- 1. INSTALL SUMP AS PER DETAIL (SHOW PROPOSED LOCATION ON DRAWING).
- 2. DEWATER USING SUBMERSIBLE PUMP(S) AS NEEDED, 3" DISCHARGE

HOSE AND SEDIMENTATION FILTER RΔG


- 3. IF PUMPING CLEAR WATER, IT CAN BE PUMPED AROUND THE WORK AREA AND BACK INTO STREAM CHANNEL AND NOT INTO A SEDIMENT BAG.
- 4. IF TURBID WATER NEEDS TO BE REMOVED FROM WORK AREA, IT SHALL BE PUMPED INTO A SEDIMENTATION FILTER BAG WHICH WILL BE LOCATED IN AN UPLAND AREA AND SURROUNDED BY STRAWBALES.
- 5. NOTE ANY DISCHARGE AREAS ON THE DRAWINGS
- WETLAND CROSSING CONSTRUCTION SPECIFICATIONS
- 1. PLEASE SEE THE STRUCTURAL ENGINEERING REPORT SUBMITTED AS PART OF THE AMENDED ORDER OF CONDITIONS FOR CROSSING DETAILS. THIS REPORT IS PREPARED BY CONTECH ENGINEERED SOLUTIONS LLC, DATE SEPTEMBER 21, 2022 AND IS SUBMITTED AS PART OF THE PROPOSED AMENDMENTS TO THE EXISTING ORDER OF CONDITIONS.
- 2. IN THE EVENT OF DISCREPANCIES BETWEEN THE STRUCTURAL REPORT AND THE PREVIOUSLY APPROVED PLAN SET, THE STRUCTURAL REPORT WILL GOVERN ALL STRUCTURAL ELEMENTS AND THE ORDER OF CONDITION(S) WILL GOVERN ALL EROSION CONTROL MEASURES.

WETLAND REPLICATION NOTES: SCHEDULE:

- WETLAND REPLICATION WORK SHALL TAKE PLACE DURING THE GROWING SEASON. ONCE BEGUN, WORK WILL BE COMPLETED WITHIN APPROXIMATELY THREE WEEKS. WETLAND REPLICATION WORK SHALL BE DONE CONCURRENT WITH SITE WORK.
- 2. THE WHATELY CONSERVATION COMMISSION (WCC) SHALL BE CONTACTED 48 HOURS IN ADVANCE OF THE START OF WORK AND A PRECONSTRUCTION SITE MEETING SHALL BE HELD WITH THE WCC, PIONEER LAND PLANNING OR WETLAND SCIENTIST, AND THE APPLICANT.
- THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE, SHALL BE ON SITE AT THE START OF WORK AND CHECK ON THE PROGRESS OF THE PROJECT REGULARLY DURING WORK IN WETLANDS AND AT OTHER CRITICAL POINTS DURING CONSTRUCTION. AT A MINIMUM, THE WETLAND SCIENTIST SHALL BE PRESENT: AT THE START OF WORK; TO VERIFY SUBGRADES; AT THE BEGINNING OF PLANTING; AND TO VERIFY THAT WORK IS COMPLETE.
- 4. AN INSPECTION REPORT SHALL BE SUBMITTED TO THE WCC BY THE APPLICANT DURING THE WETLAND CONSTRUCTION PERIOD.

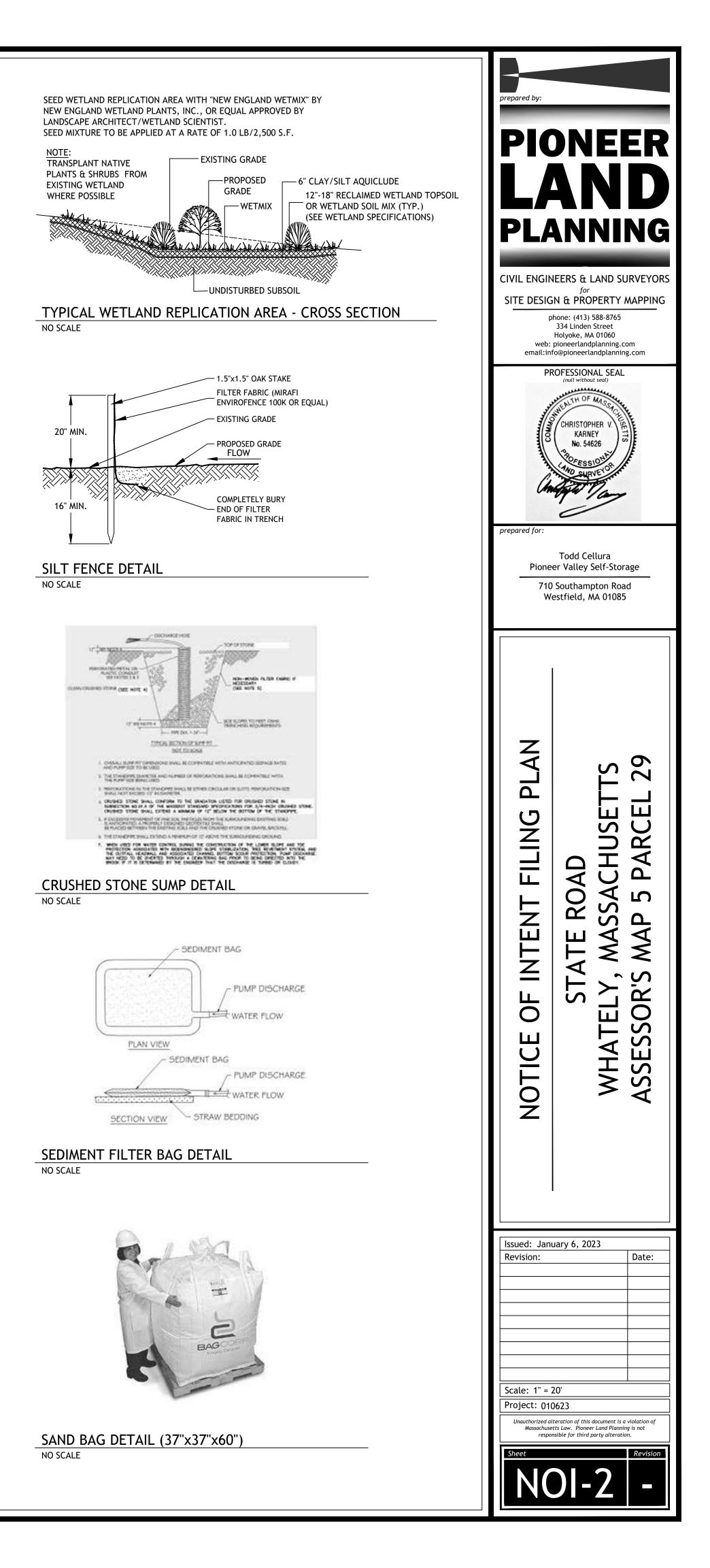
CONSTRUCTION SEQUENCE:

- THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE, SHALL STAKE OUT THE LIMITS OF THE WETLAND REPLICATION AREA BEFORE CONSTRUCTION COMMENCES AND MARK GRADE STAKES FOR CUT TO PROPER DEPTH BELOW PROPOSED FINISH GRADE FOR REPLICATION AREA.
- INSTALL EROSION CONTROL AND SILT BARRIERS AT LOCATIONS SHOWN ON PLAN, PRIOR TO CONSTRUCTION. NO EQUIPMENT TRAFFIC OR OTHER ALTERATION IS PERMITTED BEYOND SEDIMENT BARRIERS OR IN WETLAND AREAS, EXCEPT FOR GRADING AS SHOWN ON THE PLAN. BARRIERS WITHIN THE WETLAND SHALL BE INSTALLED SO AS TO MINIMIZE DISTURBANCE OF THE WETLAND. SILT FENCING SHALL BE TRENCHED IN BY HAND IN WETLAND AREAS. STRAW BALES MAY BE SET DIRECTLY ON THE WETLAND SURFACE WITHOUT TRENCHING, BUT MUST BE WELL STAKED, TIGHTLY BUTTED, AND JOINTS CHINKED WITH LOOSE HAY.
- CLEAR AND GRUB THE REPLICATION AREA AND REMOVE TOPSOIL FOR STOCKPILING ON ADJACENT LAND AS PER THESE PLANS. EXCAVATE SUBSOIL TO THE DEPTH BELOW THE FINAL GRADE SHOWN ON PLANS TO

ALLOW FOR INLAY OF ORGANIC SOIL. DO NOT STOCKPILE TOPSOIL, SUBSOIL. STUMPS OR DEBRIS WITHIN RESOURCE AREAS.

- EXCAVATION WORK SHALL BE DONE FROM OUTSIDE THE EXISTING WETLAND AND SHALL PROGRESS FROM THE WETLAND EDGE INTO THE UPLAND.
- 5. THE GROUNDWATER ELEVATION SHALL BE VERIFIED IN THE WETLAND REPLICATION AREA BY THE THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE, ONCE THE REPLICATION AREA HAS BEEN EXCAVATED TO SUB-GRADE. IF SEASONAL HIGH GROUNDWATER IS NOT PRESENT AT OR WITHIN SUFFICIENT DEPTH TO SUPPORT WETLAND VEGETATION, MODIFICATIONS TO THE PROPOSED REPLICATION AREA TOPOGRAPHY SHALL BE MADE IN THE FIELD UNDER THE SUPERVISION OF THE THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE.
- REPLACE 12 INCHES OF ORGANIC SOIL INLAY TO THE REPLICATION AREA TO ACHIEVE FINAL GRADE. ORGANIC SOIL SHALL BE AN ORGANIC FINE SANDY LOAM APPROVED BY THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE. IT IS ANTICIPATED THAT THE TOPSOIL EXCAVATED FROM THE REPLICATION SITE WILL BE AMENDED FOR THE WETLAND SOIL INLAY.
- 7. AVOID COMPACTION OF SUBSOILS AND PLACED WETLAND SOILS. EQUIPMENT TRAFFIC IN THE REPLICATION AREA IS TO BE MINIMIZED BY USING TRACK INSTEAD OF WHEEL MACHINES. THERE SHALL BE NO TRAFFIC ON WETLAND SOILS ALREADY PLACED.
- 8. WETLAND PLANT MIX, AS SPECIFIED ON THE PLANS, SHALL BE OBTAINED FROM A NURSERY IN THE NEW ENGLAND STATES. SEE NOTICE OF INTENT FILING FOR PLANTING REPLICATION AREA PLANTING SCHEDULE.
- 9. ALL EXPOSED SOIL WITHIN THE RESOURCE AREA(S) SHALL BE SEEDED WITH A WETLAND MIXTURE (SEE SPECIFICATION) AND MULCHED WITH WET MEADOW HAY, SALT HAY OR STRAW TO PREVENT EROSION UNTIL VEGETATION IS ESTABLISHED AND A CERTIFICATE OF COMPLIANCE IS RECEIVED FROM THE LOCAL CONSERVATION COMMISSION.
- 10. FINAL WETLAND REPLICATION AREA ELEVATIONS SHALL BE CERTIFIED BY THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE.
- 11. IMPACT TO ADJACENT WETLAND AREAS SHALL BE AT A MINIMUM. STORAGE OF ANY CONSTRUCTION MATERIALS OR MACHINERY IN

ADJACENT WETLAND AREAS IS PROHIBITED. USE OF HEAVY MACHINERY IN ADJACENT WETLAND AREAS IS PERMITTED FOR CONSTRUCTION OF THE REPLICATION AREA ONLY WITHIN THE LIMITS OF THE EROSION CONTROL BARRIERS. ANY ADJACENT WETLAND DISTURBED DURING CONSTRUCTION WILL BE REESTABLISHED TO ITS PRE-CONSTRUCTION CONDITION AT THE CONTRACTOR'S EXPENSE.


- 12. ALL SLOPES AND FILL AREAS IN BUFFER ZONE SHALL BE SEEDED AND MULCHED UPON COMPLETION OF CONSTRUCTION TO PREVENT ANY POSSIBLE IMPACT TO ADJACENT WETLAND.
- 13. UPON COMPLETION OF THE CONSTRUCTION PHASE OF THE WETLAND REPLICATION, THE CONTRACTOR SHALL CONTACT THE THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE, FOR AN INSPECTION. THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE, SHALL NOTIFY THE LOCAL CONSERVATION COMMISSION AS TO THE COMPLETION DATE.

ESTABLISHMENT & MONITORING:

- 1. AT THE END OF EACH GROWING SEASON, AND UNTIL COMPLIANCE WITH THE PERFORMANCE STANDARDS SET FORTH IN 310 CMR 10.55(4)(B)1-7 IS ACHIEVED, A PROGRESS REPORT SHALL BE SUBMITTED BY A REGISTERED LANDSCAPE ARCHITECT OR WETLAND SCIENTIST, TO THE LOCAL ISSUING AUTHORITY.
- 2. ALL WORK SHALL COMPLY WITH 310 CMR 10.55 (4)(B)1-7: WITHIN TWO GROWING SEASONS AFTER COMPLETION. AT LEAST 75% OF THE REPLICATION AREA SHALL BE ESTABLISHED WITH INDIGENOUS WETLAND PLANT SPECIES. IF AT THE END OF THE FIRST OR THE SECOND GROWING SEASON (OR BOTH), THE SUCCESS RATE IS NOT EXPECTED TO BE 75%, PLANTING AND/OR RE-SEEDING OF THE REPLICATION AREA SHALL BE UNDERTAKEN. VEGETATION MAY BE CUT OR REMOVED SELECTIVELY TO ELIMINATE NUISANCE OR INVASIVE PLANTS AND ENCOURAGE WETLAND SPECIES.

MAINTENANCE

1. AFTER SUCCESSFUL ESTABLISHMENT OF WETLAND VEGETATION AND RECEIPT OF A CERTIFICATE OF COMPLIANCE, THE AREA SHALL BE PERMITTED TO GROW WITHOUT DISTURBANCE. NO CONTINUING MAINTENANCE IS REQUIRED, EXCEPT FOR THE POSSIBLE SELECTIVE PRUNING OR REMOVAL OF NUISANCE AND/OR INVASIVE SPECIES THAT MAY HAVE INVADED THE REPLICATION AREA.

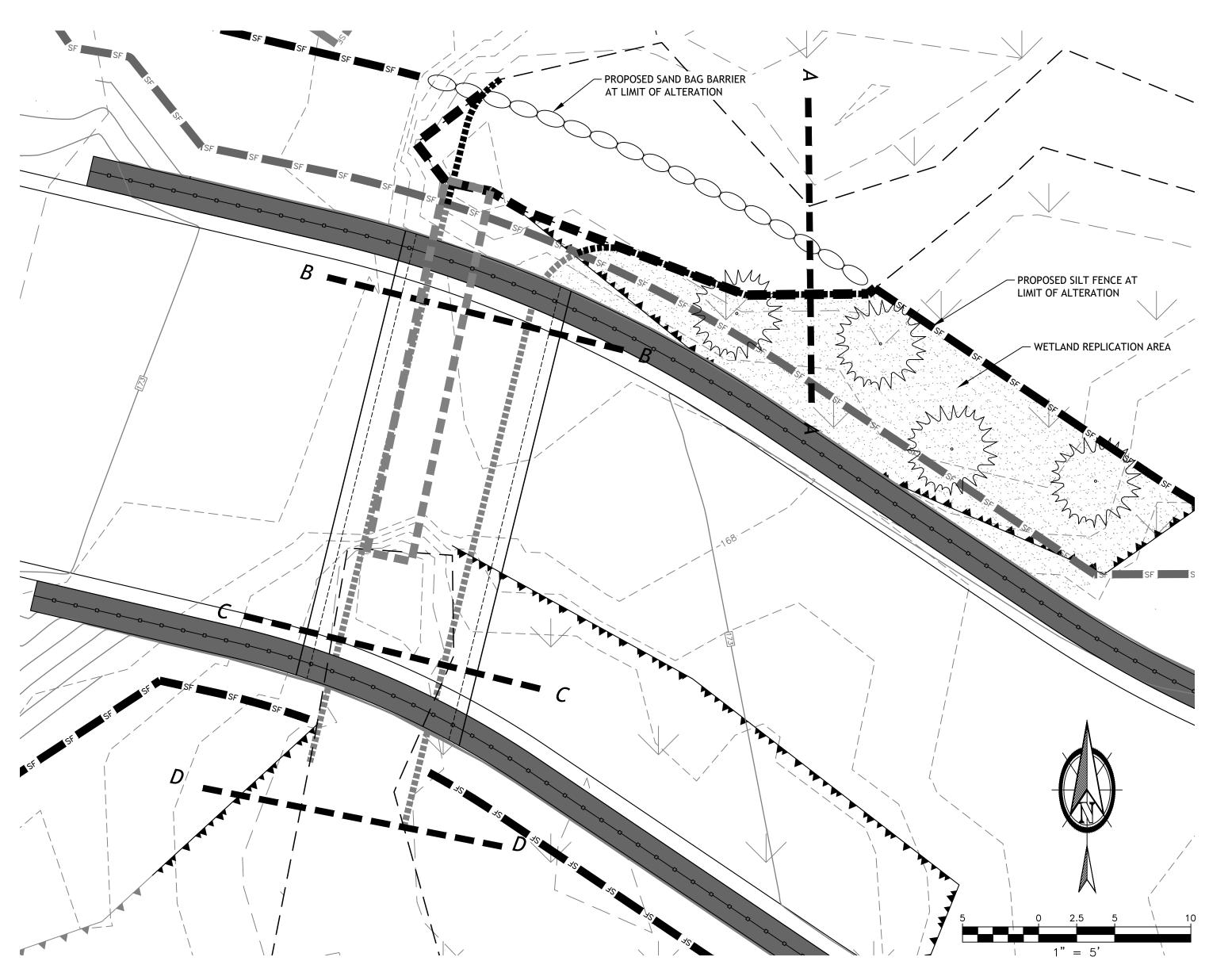
WETLAND REPLICATION NOTES: SCHEDULE:

- 1. WETLAND REPLICATION WORK SHALL TAKE PLACE DURING THE GROWING SEASON. ONCE BEGUN. WORK WILL BE COMPLETED WITHIN APPROXIMATELY THREE WEEKS. WETLAND REPLICATION WORK SHALL BE DONE CONCURRENT WITH SITE WORK.
- 2. THE WHATELY CONSERVATION COMMISSION (WCC) SHALL BE CONTACTED 48 HOURS IN ADVANCE OF THE START OF WORK AND A PRECONSTRUCTION SITE MEETING SHALL BE HELD WITH THE WCC, PIONEER LAND PLANNING OR WETLAND SCIENTIST, AND THE APPLICANT.
- 3. THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE, SHALL BE ON SITE AT THE START OF WORK AND CHECK ON THE PROGRESS OF THE PROJECT REGULARLY DURING WORK IN WETLANDS AND AT OTHER CRITICAL POINTS DURING CONSTRUCTION. AT A MINIMUM. THE WETLAND SCIENTIST SHALL BE PRESENT: AT THE START OF WORK; TO VERIFY SUBGRADES; AT THE BEGINNING OF PLANTING; AND TO VERIFY THAT WORK IS COMPLETE.
- 4. AN INSPECTION REPORT SHALL BE SUBMITTED TO THE WCC BY THE APPLICANT DURING THE WETLAND CONSTRUCTION PERIOD.
- CONSTRUCTION SEQUENCE:
- 1. THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE, SHALL STAKE OUT THE LIMITS OF THE WETLAND REPLICATION AREA BEFORE CONSTRUCTION COMMENCES AND MARK GRADE STAKES FOR CUT TO PROPER DEPTH BELOW PROPOSED FINISH GRADE FOR REPLICATION AREA.
- 2. INSTALL EROSION CONTROL AND SILT BARRIERS AT LOCATIONS SHOWN ON PLAN, PRIOR TO CONSTRUCTION. NO EQUIPMENT

STREAM BED CONSTRUCTION SEQUENCE

- 1. CREATE AN ARMORED LOW FLOW CHANNEL WITHIN THE NEW CULVERT
- 2. BURY 3-6-INCH ROUNDED NATURAL STONE 14 INCHES DOWN (BELOW THE ELEVATION OF THE CULVERT)
- 3. USE MIRAFI/ GEOTEXTILE FABRIC BELOW THE NATURAL STONE
- 4. COVER THE STONE WITH SILT FROM BELOW THE EXISTING CULVERT TO MATCH THE SUBSTRATE OF THE EXISTING STREAM
- 5. SET ASIDE THE EXISTING STREAM SEDIMENT, AFTER THE REMOVAL OF THE EXISTING CULVERT, AND COVER WITH A TARP BEFORE RE-USING WITHIN THE NEW CULVERT
- 6. MATCH THE CHANNEL ELEVATION ABOVE AND BELOW THE CULVERT
- 7. THE PLACEMENT OF THE FABRIC, STONE, AND SEDIMENT WILL BE DONE BEFORE PLACING THE NEW CULVERT OVER THE CHANNEL.

DEWATERING NOTES


- 1. INSTALL SUMP AS PER DETAIL (SHOW PROPOSED LOCATION ON DRAWING).
- 2. DEWATER USING SUBMERSIBLE PUMP(S) AS NEEDED, 3" DISCHARGE HOSE AND SEDIMENTATION FILTER BAG.
- 3. IF PUMPING CLEAR WATER, IT CAN BE PUMPED AROUND THE WORK AREA AND BACK INTO STREAM CHANNEL AND NOT INTO A SEDIMENT BAG.
- 4. IF TURBID WATER NEEDS TO BE REMOVED FROM WORK AREA, IT SHALL BE PUMPED INTO A SEDIMENTATION FILTER BAG WHICH WILL BE LOCATED IN AN UPLAND AREA AND SURROUNDED BY STRAWBALES.
- 5. NOTE ANY DISCHARGE AREAS ON THE DRAWINGS

WETLAND CROSSING CONSTRUCTION **SPECIFICATIONS**

- 1. PLEASE SEE THE STRUCTURAL ENGINEERING REPORT SUBMITTED AS PART OF THE AMENDED ORDER OF CONDITIONS FOR CROSSING DETAILS. THIS REPORT IS PREPARED BY CONTECH ENGINEERED SOLUTIONS LLC, DATE SEPTEMBER 21, 2022 AND IS SUBMITTED AS PART OF THE PROPOSED AMENDMENTS TO THE EXISTING ORDER OF CONDITIONS.
- 2. IN THE EVENT OF DISCREPANCIES BETWEEN THE STRUCTURAL REPORT AND THE PREVIOUSLY APPROVED PLAN SET, THE STRUCTURAL REPORT WILL GOVERN ALL STRUCTURAL ELEMENTS AND THE ORDER OF CONDITION(S) WILL GOVERN ALL EROSION CONTROL MEASURES.

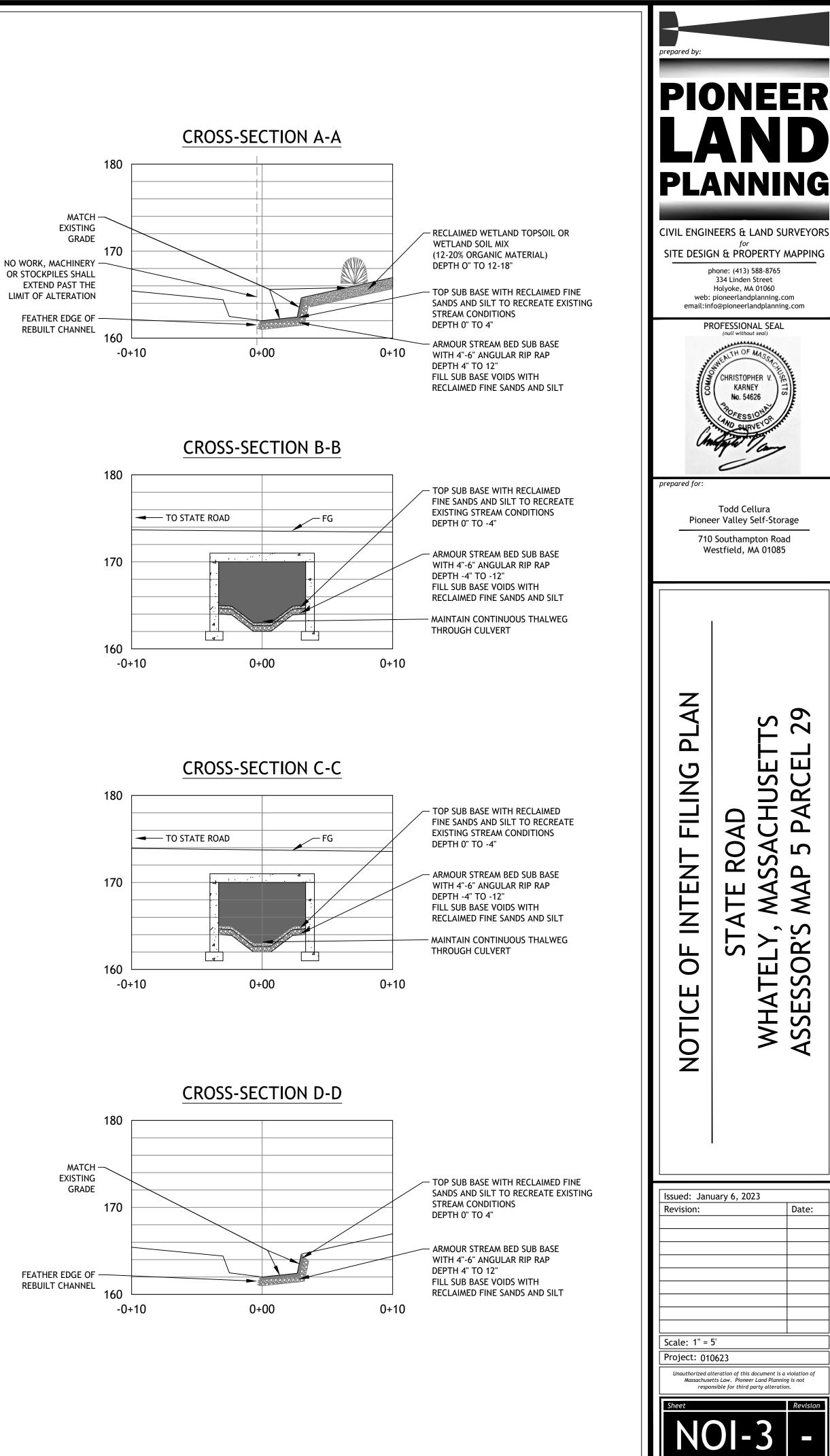
TRAFFIC OR OTHER ALTERATION IS PERMITTED BEYOND SEDIMENT BARRIERS OR IN WETLAND AREAS, EXCEPT FOR GRADING AS SHOWN ON THE PLAN. BARRIERS WITHIN THE WETLAND SHALL BE INSTALLED SO AS TO MINIMIZE DISTURBANCE OF THE WETLAND. SILT FENCING SHALL BE TRENCHED IN BY HAND IN WETLAND AREAS. STRAW BALES MAY BE SET DIRECTLY ON THE WETLAND SURFACE WITHOUT TRENCHING, BUT MUST BE WELL STAKED. TIGHTLY BUTTED, AND JOINTS CHINKED WITH LOOSE HAY.

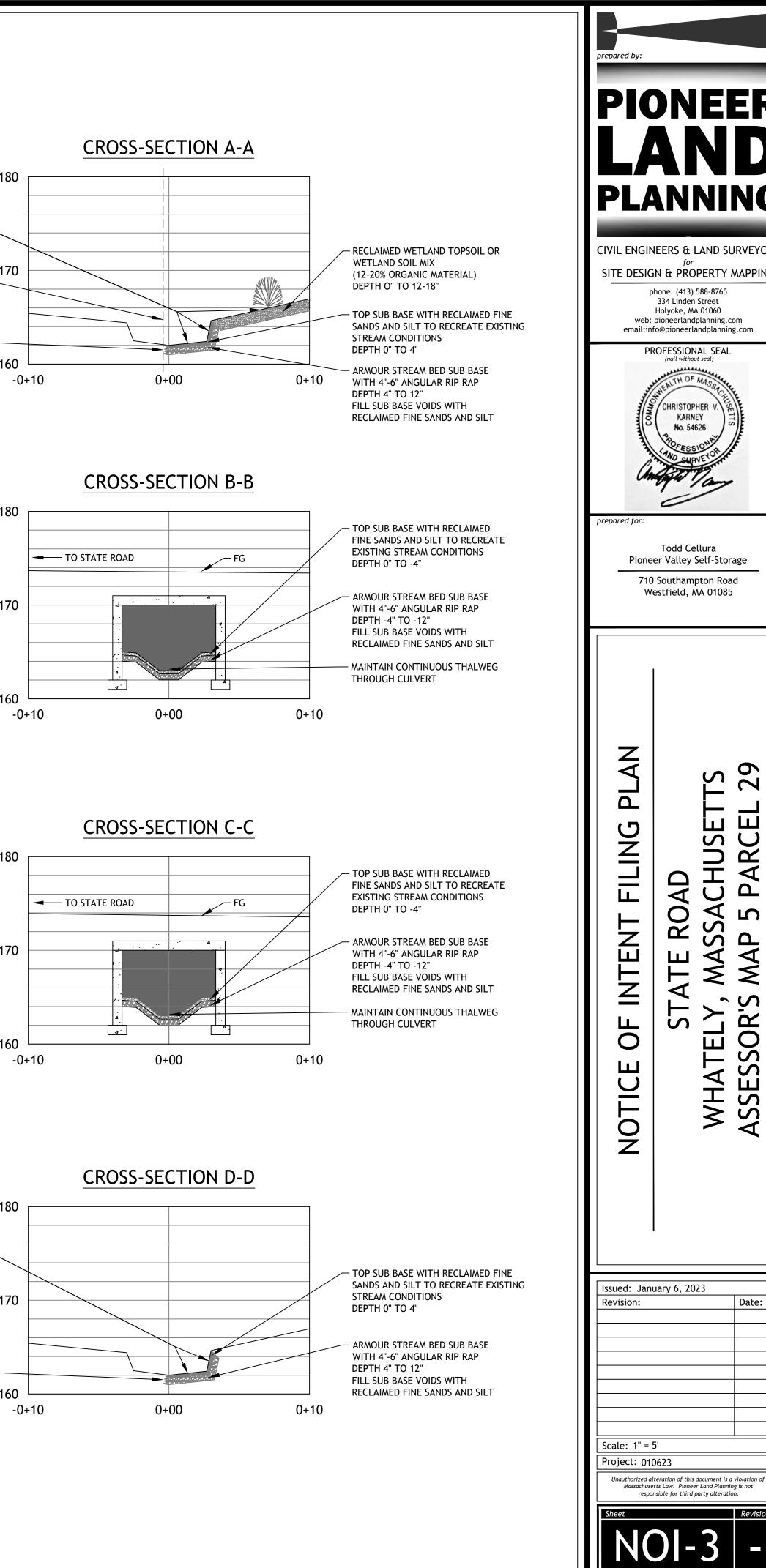
- 3. CLEAR AND GRUB THE REPLICATION AREA AND REMOVE TOPSOIL FOR STOCKPILING ON ADJACENT LAND AS PER THESE PLANS. EXCAVATE SUBSOIL TO THE DEPTH BELOW THE FINAL GRADE SHOWN ON PLANS TO ALLOW FOR INLAY OF ORGANIC SOIL. DO NOT STOCKPILE TOPSOIL, SUBSOIL, STUMPS OR DEBRIS WITHIN RESOURCE AREAS.
- 4. EXCAVATION WORK SHALL BE DONE FROM OUTSIDE THE EXISTING WETLAND AND SHALL PROGRESS FROM THE WETLAND EDGE INTO THE UPLAND.
- 5. THE GROUNDWATER ELEVATION SHALL BE VERIFIED IN THE WETLAND REPLICATION AREA BY THE THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE. ONCE THE REPLICATION AREA HAS BEEN EXCAVATED TO SUB-GRADE. IF SEASONAL HIGH GROUNDWATER IS NOT PRESENT AT OR WITHIN SUFFICIENT DEPTH TO SUPPORT WETLAND VEGETATION, MODIFICATIONS TO THE PROPOSED REPLICATION AREA TOPOGRAPHY SHALL BE MADE IN THE FIELD UNDER THE SUPERVISION OF THE THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE.
- 6. REPLACE 12 INCHES OF ORGANIC SOIL INLAY TO THE REPLICATION AREA TO ACHIEVE FINAL GRADE. ORGANIC SOIL SHALL BE AN ORGANIC FINE SANDY LOAM APPROVED BY THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE. IT IS ANTICIPATED THAT THE TOPSOIL EXCAVATED FROM THE REPLICATION SITE WILL BE AMENDED FOR THE WETLAND SOIL INLAY.

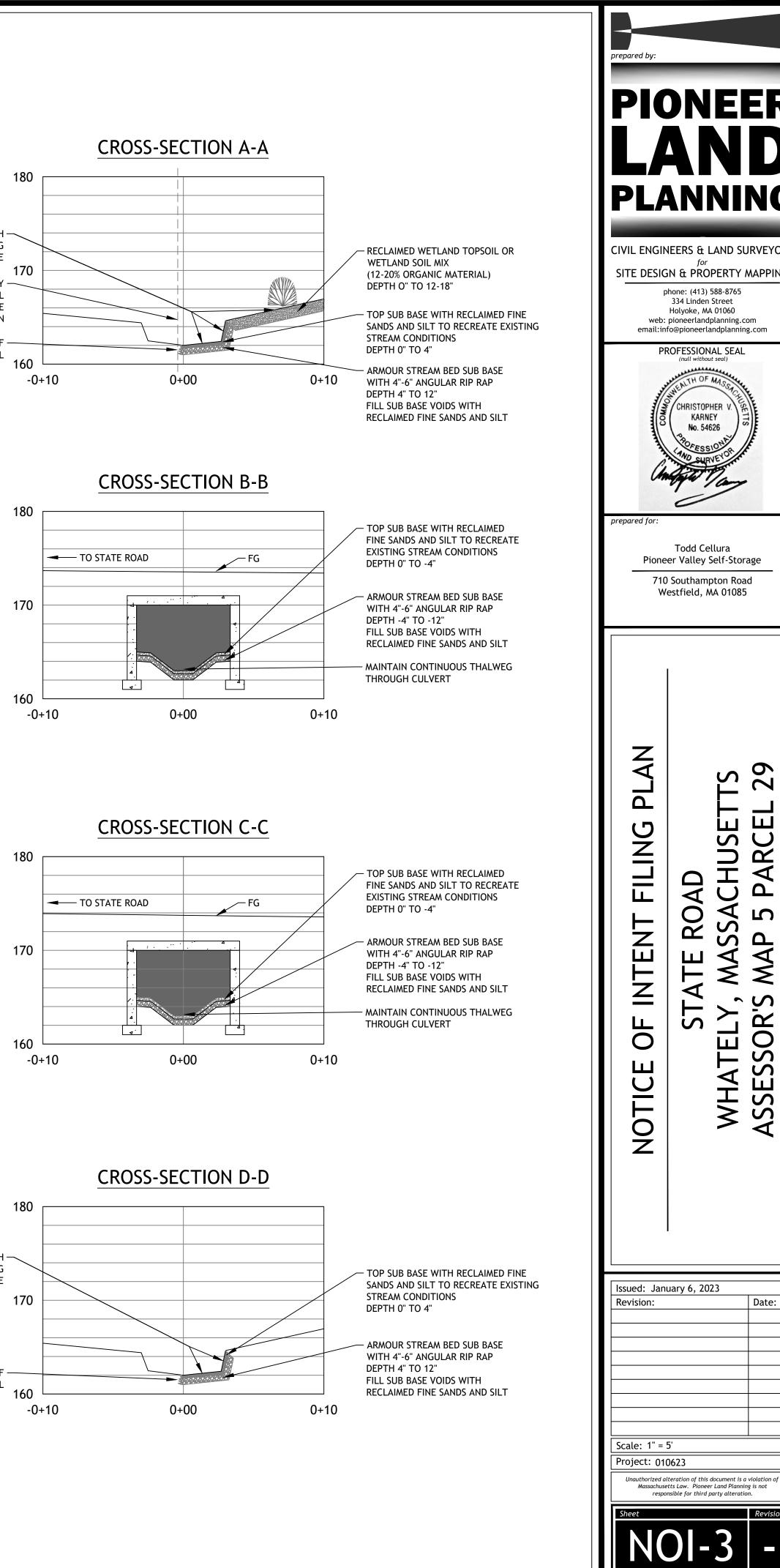
- 8. WETLAND PLANT MIX, AS SPECIFIED ON THE PLANS, SHALL BE OBTAINED FROM A NURSERY IN THE NEW ENGLAND STATES. SEE NOTICE OF INTENT FILING FOR PLANTING REPLICATION AREA PLANTING SCHEDULE.
- 9. ALL EXPOSED SOIL WITHIN THE RESOURCE AREA(S) SHALL BE SEEDED WITH A WETLAND MIXTURE (SEE SPECIFICATION) AND MULCHED WITH WET MEADOW HAY, SALT HAY OR STRAW TO PREVENT EROSION UNTIL VEGETATION IS ESTABLISHED AND A CERTIFICATE OF COMPLIANCE IS RECEIVED FROM THE LOCAL CONSERVATION COMMISSION.
- 10. FINAL WETLAND REPLICATION AREA ELEVATIONS SHALL BE CERTIFIED BY THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE.
- 11. IMPACT TO ADJACENT WETLAND AREAS SHALL BE AT A MINIMUM. STORAGE OF ANY CONSTRUCTION MATERIALS OR MACHINERY IN ADJACENT WETLAND AREAS IS PROHIBITED. USE OF HEAVY MACHINERY IN ADJACENT WETLAND AREAS IS PERMITTED FOR CONSTRUCTION OF THE REPLICATION AREA ONLY WITHIN THE LIMITS OF THE EROSION CONTROL BARRIERS. ANY ADJACENT WETLAND DISTURBED DURING CONSTRUCTION WILL BE REESTABLISHED TO ITS PRE-CONSTRUCTION CONDITION AT THE CONTRACTOR'S EXPENSE.

7. AVOID COMPACTION OF SUBSOILS AND PLACED WETLAND SOILS. EQUIPMENT TRAFFIC IN THE REPLICATION AREA IS TO BE MINIMIZED BY USING TRACK INSTEAD OF WHEEL MACHINES. THERE SHALL BE NO TRAFFIC ON WETLAND SOILS ALREADY PLACED.

12. ALL SLOPES AND FILL AREAS IN BUFFER ZONE SHALL BE SEEDED AND MULCHED UPON COMPLETION OF CONSTRUCTION TO PREVENT ANY POSSIBLE IMPACT TO ADJACENT WETLAND.


13. UPON COMPLETION OF THE CONSTRUCTION PHASE OF THE WETLAND REPLICATION, THE CONTRACTOR SHALL CONTACT THE THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE, FOR AN INSPECTION. THE WETLAND SCIENTIST, OR THEIR REPRESENTATIVE, SHALL NOTIFY THE LOCAL CONSERVATION COMMISSION AS TO THE COMPLETION DATE.


ESTABLISHMENT & MONITORING:


- 1. AT THE END OF EACH GROWING SEASON, AND UNTIL COMPLIANCE WITH THE PERFORMANCE STANDARDS SET FORTH IN 310 CMR 10.55(4)(B)1-7 IS ACHIEVED, A PROGRESS REPORT SHALL BE SUBMITTED BY A REGISTERED LANDSCAPE ARCHITECT OR WETLAND SCIENTIST, TO THE LOCAL ISSUING AUTHORITY.
- 2. ALL WORK SHALL COMPLY WITH 310 CMR 10.55 (4)(B)1-7: WITHIN TWO GROWING SEASONS AFTER COMPLETION, AT LEAST 75% OF THE REPLICATION AREA SHALL BE ESTABLISHED WITH INDIGENOUS WETLAND PLANT SPECIES. IF AT THE END OF THE FIRST OR THE SECOND GROWING SEASON (OR BOTH). THE SUCCESS RATE IS NOT EXPECTED TO BE 75%. PLANTING AND/OR RE-SEEDING OF THE REPLICATION AREA SHALL BE UNDERTAKEN. VEGETATION MAY BE CUT OR REMOVED SELECTIVELY TO ELIMINATE NUISANCE OR INVASIVE PLANTS AND ENCOURAGE WETLAND SPECIES.


MAINTENANCE:

1. AFTER SUCCESSFUL ESTABLISHMENT OF WETLAND VEGETATION AND RECEIPT OF A CERTIFICATE OF COMPLIANCE, THE AREA SHALL BE PERMITTED TO GROW WITHOUT DISTURBANCE. NO CONTINUING MAINTENANCE IS REQUIRED, EXCEPT FOR THE POSSIBLE SELECTIVE PRUNING OR REMOVAL OF NUISANCE AND/OR INVASIVE SPECIES THAT MAY HAVE INVADED THE REPLICATION AREA.

